MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyi Structured version   Visualization version   GIF version

Theorem llyi 22978
Description: The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyi ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑃   𝑢,𝑈   𝑢,𝐽

Proof of Theorem llyi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islly 22972 . . . 4 (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
21simprbi 498 . . 3 (𝐽 ∈ Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
3 pweq 4617 . . . . . . 7 (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈)
43ineq2d 4213 . . . . . 6 (𝑥 = 𝑈 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑈))
54rexeqdv 3327 . . . . 5 (𝑥 = 𝑈 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
65raleqbi1dv 3334 . . . 4 (𝑥 = 𝑈 → (∀𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
76rspccva 3612 . . 3 ((∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
82, 7sylan 581 . 2 ((𝐽 ∈ Locally 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
9 eleq1 2822 . . . . . . 7 (𝑦 = 𝑃 → (𝑦𝑢𝑃𝑢))
109anbi1d 631 . . . . . 6 (𝑦 = 𝑃 → ((𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1110anbi2d 630 . . . . 5 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
12 anass 470 . . . . . 6 (((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
13 elin 3965 . . . . . . . 8 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢 ∈ 𝒫 𝑈))
14 velpw 4608 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑈𝑢𝑈)
1514anbi2i 624 . . . . . . . 8 ((𝑢𝐽𝑢 ∈ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1613, 15bitri 275 . . . . . . 7 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1716anbi1i 625 . . . . . 6 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ ((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
18 3anass 1096 . . . . . . 7 ((𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1918anbi2i 624 . . . . . 6 ((𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2012, 17, 193bitr4i 303 . . . . 5 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2111, 20bitrdi 287 . . . 4 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2221rexbidv2 3175 . . 3 (𝑦 = 𝑃 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2322rspccva 3612 . 2 ((∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
248, 23stoic3 1779 1 ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cin 3948  wss 3949  𝒫 cpw 4603  (class class class)co 7409  t crest 17366  Topctop 22395  Locally clly 22968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-lly 22970
This theorem is referenced by:  llynlly  22981  islly2  22988  llyrest  22989  llyidm  22992  nllyidm  22993  lly1stc  23000  dislly  23001  txlly  23140  cvmlift2lem10  34303
  Copyright terms: Public domain W3C validator