MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyi Structured version   Visualization version   GIF version

Theorem llyi 22708
Description: The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyi ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑃   𝑢,𝑈   𝑢,𝐽

Proof of Theorem llyi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islly 22702 . . . 4 (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
21simprbi 497 . . 3 (𝐽 ∈ Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
3 pweq 4559 . . . . . . 7 (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈)
43ineq2d 4157 . . . . . 6 (𝑥 = 𝑈 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑈))
54rexeqdv 3311 . . . . 5 (𝑥 = 𝑈 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
65raleqbi1dv 3304 . . . 4 (𝑥 = 𝑈 → (∀𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
76rspccva 3569 . . 3 ((∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
82, 7sylan 580 . 2 ((𝐽 ∈ Locally 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
9 eleq1 2825 . . . . . . 7 (𝑦 = 𝑃 → (𝑦𝑢𝑃𝑢))
109anbi1d 630 . . . . . 6 (𝑦 = 𝑃 → ((𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1110anbi2d 629 . . . . 5 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
12 anass 469 . . . . . 6 (((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
13 elin 3913 . . . . . . . 8 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢 ∈ 𝒫 𝑈))
14 velpw 4550 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑈𝑢𝑈)
1514anbi2i 623 . . . . . . . 8 ((𝑢𝐽𝑢 ∈ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1613, 15bitri 274 . . . . . . 7 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1716anbi1i 624 . . . . . 6 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ ((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
18 3anass 1094 . . . . . . 7 ((𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1918anbi2i 623 . . . . . 6 ((𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2012, 17, 193bitr4i 302 . . . . 5 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2111, 20bitrdi 286 . . . 4 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2221rexbidv2 3168 . . 3 (𝑦 = 𝑃 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2322rspccva 3569 . 2 ((∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
248, 23stoic3 1777 1 ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  wrex 3071  cin 3896  wss 3897  𝒫 cpw 4545  (class class class)co 7317  t crest 17208  Topctop 22125  Locally clly 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-iota 6418  df-fv 6474  df-ov 7320  df-lly 22700
This theorem is referenced by:  llynlly  22711  islly2  22718  llyrest  22719  llyidm  22722  nllyidm  22723  lly1stc  22730  dislly  22731  txlly  22870  cvmlift2lem10  33413
  Copyright terms: Public domain W3C validator