| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual1dim | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldual1dim.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldual1dim.l | ⊢ 𝐿 = (LKer‘𝑊) |
| ldual1dim.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldual1dim.n | ⊢ 𝑁 = (LSpan‘𝐷) |
| ldual1dim.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| ldual1dim.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldual1dim | ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | ldual1dim.d | . . . . . . . 8 ⊢ 𝐷 = (LDual‘𝑊) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 5 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
| 6 | ldual1dim.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | 1, 2, 3, 4, 5, 6 | ldualsbase 39178 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊))) |
| 8 | 7 | eleq2d 2817 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) |
| 9 | 8 | anbi1d 631 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)))) |
| 10 | ldual1dim.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 11 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 12 | eqid 2731 | . . . . . . . 8 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 13 | eqid 2731 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
| 14 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) | |
| 16 | ldual1dim.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) |
| 18 | 10, 11, 1, 2, 12, 3, 13, 14, 15, 17 | ldualvs 39182 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠 ‘𝐷)𝐺) = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) |
| 19 | 18 | eqeq2d 2742 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
| 20 | 19 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
| 21 | 9, 20 | bitrd 279 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
| 22 | 21 | rexbidv2 3152 | . . 3 ⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
| 23 | 22 | abbidv 2797 | . 2 ⊢ (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
| 24 | lveclmod 21041 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 25 | 3, 24 | lduallmod 39198 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ LMod) |
| 26 | 6, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 27 | eqid 2731 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 28 | 10, 3, 27, 6, 16 | ldualelvbase 39172 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 29 | ldual1dim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝐷) | |
| 30 | 4, 5, 27, 13, 29 | lspsn 20936 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
| 31 | 26, 28, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
| 32 | ldual1dim.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
| 33 | 11, 1, 10, 32, 2, 12, 6, 16 | lfl1dim 39166 | . 2 ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
| 34 | 23, 31, 33 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {crab 3395 ⊆ wss 3902 {csn 4576 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 LModclmod 20794 LSpanclspn 20905 LVecclvec 21037 LFnlclfn 39102 LKerclk 39130 LDualcld 39168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19230 df-lsm 19549 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-nzr 20429 df-rlreg 20610 df-domn 20611 df-drng 20647 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lvec 21038 df-lshyp 39022 df-lfl 39103 df-lkr 39131 df-ldual 39169 |
| This theorem is referenced by: mapdsn3 41688 |
| Copyright terms: Public domain | W3C validator |