| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual1dim | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldual1dim.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldual1dim.l | ⊢ 𝐿 = (LKer‘𝑊) |
| ldual1dim.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldual1dim.n | ⊢ 𝑁 = (LSpan‘𝐷) |
| ldual1dim.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| ldual1dim.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldual1dim | ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | ldual1dim.d | . . . . . . . 8 ⊢ 𝐷 = (LDual‘𝑊) | |
| 4 | eqid 2733 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 5 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
| 6 | ldual1dim.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | 1, 2, 3, 4, 5, 6 | ldualsbase 39253 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊))) |
| 8 | 7 | eleq2d 2819 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) |
| 9 | 8 | anbi1d 631 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)))) |
| 10 | ldual1dim.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 11 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 12 | eqid 2733 | . . . . . . . 8 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 13 | eqid 2733 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
| 14 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) | |
| 16 | ldual1dim.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) |
| 18 | 10, 11, 1, 2, 12, 3, 13, 14, 15, 17 | ldualvs 39257 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠 ‘𝐷)𝐺) = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) |
| 19 | 18 | eqeq2d 2744 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
| 20 | 19 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
| 21 | 9, 20 | bitrd 279 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
| 22 | 21 | rexbidv2 3153 | . . 3 ⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
| 23 | 22 | abbidv 2799 | . 2 ⊢ (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
| 24 | lveclmod 21042 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 25 | 3, 24 | lduallmod 39273 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ LMod) |
| 26 | 6, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 27 | eqid 2733 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 28 | 10, 3, 27, 6, 16 | ldualelvbase 39247 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 29 | ldual1dim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝐷) | |
| 30 | 4, 5, 27, 13, 29 | lspsn 20937 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
| 31 | 26, 28, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
| 32 | ldual1dim.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
| 33 | 11, 1, 10, 32, 2, 12, 6, 16 | lfl1dim 39241 | . 2 ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
| 34 | 23, 31, 33 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 {crab 3396 ⊆ wss 3898 {csn 4575 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 Basecbs 17122 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 LModclmod 20795 LSpanclspn 20906 LVecclvec 21038 LFnlclfn 39177 LKerclk 39205 LDualcld 39243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-nzr 20430 df-rlreg 20611 df-domn 20612 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 df-lshyp 39097 df-lfl 39178 df-lkr 39206 df-ldual 39244 |
| This theorem is referenced by: mapdsn3 41763 |
| Copyright terms: Public domain | W3C validator |