Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldual1dim Structured version   Visualization version   GIF version

Theorem ldual1dim 38768
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
ldual1dim.f 𝐹 = (LFnl‘𝑊)
ldual1dim.l 𝐿 = (LKer‘𝑊)
ldual1dim.d 𝐷 = (LDual‘𝑊)
ldual1dim.n 𝑁 = (LSpan‘𝐷)
ldual1dim.w (𝜑𝑊 ∈ LVec)
ldual1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldual1dim (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑔,𝑁   𝜑,𝑔
Allowed substitution hints:   𝐹(𝑔)   𝐿(𝑔)   𝑊(𝑔)

Proof of Theorem ldual1dim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2725 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 ldual1dim.d . . . . . . . 8 𝐷 = (LDual‘𝑊)
4 eqid 2725 . . . . . . . 8 (Scalar‘𝐷) = (Scalar‘𝐷)
5 eqid 2725 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
6 ldual1dim.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
71, 2, 3, 4, 5, 6ldualsbase 38735 . . . . . . 7 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
87eleq2d 2811 . . . . . 6 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
98anbi1d 629 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺))))
10 ldual1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
11 eqid 2725 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
12 eqid 2725 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
13 eqid 2725 . . . . . . . 8 ( ·𝑠𝐷) = ( ·𝑠𝐷)
146adantr 479 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
15 simpr 483 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
16 ldual1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1716adantr 479 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺𝐹)
1810, 11, 1, 2, 12, 3, 13, 14, 15, 17ldualvs 38739 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝐷)𝐺) = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
1918eqeq2d 2736 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2019pm5.32da 577 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
219, 20bitrd 278 . . . 4 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
2221rexbidv2 3164 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2322abbidv 2794 . 2 (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
24 lveclmod 21003 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
253, 24lduallmod 38755 . . . 4 (𝑊 ∈ LVec → 𝐷 ∈ LMod)
266, 25syl 17 . . 3 (𝜑𝐷 ∈ LMod)
27 eqid 2725 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2810, 3, 27, 6, 16ldualelvbase 38729 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
29 ldual1dim.n . . . 4 𝑁 = (LSpan‘𝐷)
304, 5, 27, 13, 29lspsn 20898 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
3126, 28, 30syl2anc 582 . 2 (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
32 ldual1dim.l . . 3 𝐿 = (LKer‘𝑊)
3311, 1, 10, 32, 2, 12, 6, 16lfl1dim 38723 . 2 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
3423, 31, 333eqtr4d 2775 1 (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3059  {crab 3418  wss 3944  {csn 4630   × cxp 5676  cfv 6549  (class class class)co 7419  f cof 7683  Basecbs 17183  .rcmulr 17237  Scalarcsca 17239   ·𝑠 cvsca 17240  LModclmod 20755  LSpanclspn 20867  LVecclvec 20999  LFnlclfn 38659  LKerclk 38687  LDualcld 38725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lshyp 38579  df-lfl 38660  df-lkr 38688  df-ldual 38726
This theorem is referenced by:  mapdsn3  41246
  Copyright terms: Public domain W3C validator