Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual1dim | Structured version Visualization version GIF version |
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
Ref | Expression |
---|---|
ldual1dim.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldual1dim.l | ⊢ 𝐿 = (LKer‘𝑊) |
ldual1dim.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldual1dim.n | ⊢ 𝑁 = (LSpan‘𝐷) |
ldual1dim.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
ldual1dim.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldual1dim | ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | ldual1dim.d | . . . . . . . 8 ⊢ 𝐷 = (LDual‘𝑊) | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
5 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
6 | ldual1dim.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 1, 2, 3, 4, 5, 6 | ldualsbase 37147 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊))) |
8 | 7 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) |
9 | 8 | anbi1d 630 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)))) |
10 | ldual1dim.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
11 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
12 | eqid 2738 | . . . . . . . 8 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
13 | eqid 2738 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
14 | 6 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) |
15 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) | |
16 | ldual1dim.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) |
18 | 10, 11, 1, 2, 12, 3, 13, 14, 15, 17 | ldualvs 37151 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠 ‘𝐷)𝐺) = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) |
19 | 18 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
20 | 19 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
21 | 9, 20 | bitrd 278 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
22 | 21 | rexbidv2 3224 | . . 3 ⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
23 | 22 | abbidv 2807 | . 2 ⊢ (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
24 | lveclmod 20368 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
25 | 3, 24 | lduallmod 37167 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ LMod) |
26 | 6, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
27 | eqid 2738 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
28 | 10, 3, 27, 6, 16 | ldualelvbase 37141 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
29 | ldual1dim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝐷) | |
30 | 4, 5, 27, 13, 29 | lspsn 20264 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
31 | 26, 28, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
32 | ldual1dim.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
33 | 11, 1, 10, 32, 2, 12, 6, 16 | lfl1dim 37135 | . 2 ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
34 | 23, 31, 33 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {crab 3068 ⊆ wss 3887 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 LModclmod 20123 LSpanclspn 20233 LVecclvec 20364 LFnlclfn 37071 LKerclk 37099 LDualcld 37137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lshyp 36991 df-lfl 37072 df-lkr 37100 df-ldual 37138 |
This theorem is referenced by: mapdsn3 39657 |
Copyright terms: Public domain | W3C validator |