Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldual1dim Structured version   Visualization version   GIF version

Theorem ldual1dim 39168
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
ldual1dim.f 𝐹 = (LFnl‘𝑊)
ldual1dim.l 𝐿 = (LKer‘𝑊)
ldual1dim.d 𝐷 = (LDual‘𝑊)
ldual1dim.n 𝑁 = (LSpan‘𝐷)
ldual1dim.w (𝜑𝑊 ∈ LVec)
ldual1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldual1dim (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑔,𝑁   𝜑,𝑔
Allowed substitution hints:   𝐹(𝑔)   𝐿(𝑔)   𝑊(𝑔)

Proof of Theorem ldual1dim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2736 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 ldual1dim.d . . . . . . . 8 𝐷 = (LDual‘𝑊)
4 eqid 2736 . . . . . . . 8 (Scalar‘𝐷) = (Scalar‘𝐷)
5 eqid 2736 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
6 ldual1dim.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
71, 2, 3, 4, 5, 6ldualsbase 39135 . . . . . . 7 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
87eleq2d 2826 . . . . . 6 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
98anbi1d 631 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺))))
10 ldual1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
11 eqid 2736 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
12 eqid 2736 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
13 eqid 2736 . . . . . . . 8 ( ·𝑠𝐷) = ( ·𝑠𝐷)
146adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
15 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
16 ldual1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1716adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺𝐹)
1810, 11, 1, 2, 12, 3, 13, 14, 15, 17ldualvs 39139 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝐷)𝐺) = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
1918eqeq2d 2747 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2019pm5.32da 579 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
219, 20bitrd 279 . . . 4 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
2221rexbidv2 3174 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2322abbidv 2807 . 2 (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
24 lveclmod 21106 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
253, 24lduallmod 39155 . . . 4 (𝑊 ∈ LVec → 𝐷 ∈ LMod)
266, 25syl 17 . . 3 (𝜑𝐷 ∈ LMod)
27 eqid 2736 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2810, 3, 27, 6, 16ldualelvbase 39129 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
29 ldual1dim.n . . . 4 𝑁 = (LSpan‘𝐷)
304, 5, 27, 13, 29lspsn 21001 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
3126, 28, 30syl2anc 584 . 2 (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
32 ldual1dim.l . . 3 𝐿 = (LKer‘𝑊)
3311, 1, 10, 32, 2, 12, 6, 16lfl1dim 39123 . 2 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
3423, 31, 333eqtr4d 2786 1 (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  wrex 3069  {crab 3435  wss 3950  {csn 4625   × cxp 5682  cfv 6560  (class class class)co 7432  f cof 7696  Basecbs 17248  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  LModclmod 20859  LSpanclspn 20970  LVecclvec 21102  LFnlclfn 39059  LKerclk 39087  LDualcld 39125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-nzr 20514  df-rlreg 20695  df-domn 20696  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103  df-lshyp 38979  df-lfl 39060  df-lkr 39088  df-ldual 39126
This theorem is referenced by:  mapdsn3  41646
  Copyright terms: Public domain W3C validator