Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldual1dim Structured version   Visualization version   GIF version

Theorem ldual1dim 39211
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
ldual1dim.f 𝐹 = (LFnl‘𝑊)
ldual1dim.l 𝐿 = (LKer‘𝑊)
ldual1dim.d 𝐷 = (LDual‘𝑊)
ldual1dim.n 𝑁 = (LSpan‘𝐷)
ldual1dim.w (𝜑𝑊 ∈ LVec)
ldual1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldual1dim (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑔,𝑁   𝜑,𝑔
Allowed substitution hints:   𝐹(𝑔)   𝐿(𝑔)   𝑊(𝑔)

Proof of Theorem ldual1dim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2731 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 ldual1dim.d . . . . . . . 8 𝐷 = (LDual‘𝑊)
4 eqid 2731 . . . . . . . 8 (Scalar‘𝐷) = (Scalar‘𝐷)
5 eqid 2731 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
6 ldual1dim.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
71, 2, 3, 4, 5, 6ldualsbase 39178 . . . . . . 7 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
87eleq2d 2817 . . . . . 6 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
98anbi1d 631 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺))))
10 ldual1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
11 eqid 2731 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
12 eqid 2731 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
13 eqid 2731 . . . . . . . 8 ( ·𝑠𝐷) = ( ·𝑠𝐷)
146adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
15 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
16 ldual1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1716adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺𝐹)
1810, 11, 1, 2, 12, 3, 13, 14, 15, 17ldualvs 39182 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝐷)𝐺) = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
1918eqeq2d 2742 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2019pm5.32da 579 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
219, 20bitrd 279 . . . 4 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
2221rexbidv2 3152 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2322abbidv 2797 . 2 (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
24 lveclmod 21041 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
253, 24lduallmod 39198 . . . 4 (𝑊 ∈ LVec → 𝐷 ∈ LMod)
266, 25syl 17 . . 3 (𝜑𝐷 ∈ LMod)
27 eqid 2731 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2810, 3, 27, 6, 16ldualelvbase 39172 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
29 ldual1dim.n . . . 4 𝑁 = (LSpan‘𝐷)
304, 5, 27, 13, 29lspsn 20936 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
3126, 28, 30syl2anc 584 . 2 (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
32 ldual1dim.l . . 3 𝐿 = (LKer‘𝑊)
3311, 1, 10, 32, 2, 12, 6, 16lfl1dim 39166 . 2 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
3423, 31, 333eqtr4d 2776 1 (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {crab 3395  wss 3902  {csn 4576   × cxp 5614  cfv 6481  (class class class)co 7346  f cof 7608  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  LModclmod 20794  LSpanclspn 20905  LVecclvec 21037  LFnlclfn 39102  LKerclk 39130  LDualcld 39168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lshyp 39022  df-lfl 39103  df-lkr 39131  df-ldual 39169
This theorem is referenced by:  mapdsn3  41688
  Copyright terms: Public domain W3C validator