![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual1dim | Structured version Visualization version GIF version |
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
Ref | Expression |
---|---|
ldual1dim.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldual1dim.l | ⊢ 𝐿 = (LKer‘𝑊) |
ldual1dim.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldual1dim.n | ⊢ 𝑁 = (LSpan‘𝐷) |
ldual1dim.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
ldual1dim.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldual1dim | ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | ldual1dim.d | . . . . . . . 8 ⊢ 𝐷 = (LDual‘𝑊) | |
4 | eqid 2735 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
5 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
6 | ldual1dim.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 1, 2, 3, 4, 5, 6 | ldualsbase 39115 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊))) |
8 | 7 | eleq2d 2825 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) |
9 | 8 | anbi1d 631 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)))) |
10 | ldual1dim.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
11 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
12 | eqid 2735 | . . . . . . . 8 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
13 | eqid 2735 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
14 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) |
15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) | |
16 | ldual1dim.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) |
18 | 10, 11, 1, 2, 12, 3, 13, 14, 15, 17 | ldualvs 39119 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠 ‘𝐷)𝐺) = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) |
19 | 18 | eqeq2d 2746 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
20 | 19 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
21 | 9, 20 | bitrd 279 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
22 | 21 | rexbidv2 3173 | . . 3 ⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
23 | 22 | abbidv 2806 | . 2 ⊢ (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
24 | lveclmod 21123 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
25 | 3, 24 | lduallmod 39135 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ LMod) |
26 | 6, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
27 | eqid 2735 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
28 | 10, 3, 27, 6, 16 | ldualelvbase 39109 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
29 | ldual1dim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝐷) | |
30 | 4, 5, 27, 13, 29 | lspsn 21018 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
31 | 26, 28, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
32 | ldual1dim.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
33 | 11, 1, 10, 32, 2, 12, 6, 16 | lfl1dim 39103 | . 2 ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
34 | 23, 31, 33 | 3eqtr4d 2785 | 1 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 {crab 3433 ⊆ wss 3963 {csn 4631 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 LModclmod 20875 LSpanclspn 20987 LVecclvec 21119 LFnlclfn 39039 LKerclk 39067 LDualcld 39105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-lshyp 38959 df-lfl 39040 df-lkr 39068 df-ldual 39106 |
This theorem is referenced by: mapdsn3 41626 |
Copyright terms: Public domain | W3C validator |