MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyi Structured version   Visualization version   GIF version

Theorem nllyi 22534
Description: The property of an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyi ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑃   𝑢,𝑈   𝑢,𝐽

Proof of Theorem nllyi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 22528 . . . 4 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
21simprbi 496 . . 3 (𝐽 ∈ 𝑛-Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
3 pweq 4546 . . . . . . 7 (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈)
43ineq2d 4143 . . . . . 6 (𝑥 = 𝑈 → (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈))
54rexeqdv 3340 . . . . 5 (𝑥 = 𝑈 → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴))
65raleqbi1dv 3331 . . . 4 (𝑥 = 𝑈 → (∀𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴 ↔ ∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴))
76rspccva 3551 . . 3 ((∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴)
82, 7sylan 579 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴)
9 elin 3899 . . . . . . 7 (𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ∧ 𝑢 ∈ 𝒫 𝑈))
10 sneq 4568 . . . . . . . . . 10 (𝑦 = 𝑃 → {𝑦} = {𝑃})
1110fveq2d 6760 . . . . . . . . 9 (𝑦 = 𝑃 → ((nei‘𝐽)‘{𝑦}) = ((nei‘𝐽)‘{𝑃}))
1211eleq2d 2824 . . . . . . . 8 (𝑦 = 𝑃 → (𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ↔ 𝑢 ∈ ((nei‘𝐽)‘{𝑃})))
13 velpw 4535 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑈𝑢𝑈)
1413a1i 11 . . . . . . . 8 (𝑦 = 𝑃 → (𝑢 ∈ 𝒫 𝑈𝑢𝑈))
1512, 14anbi12d 630 . . . . . . 7 (𝑦 = 𝑃 → ((𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ∧ 𝑢 ∈ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈)))
169, 15syl5bb 282 . . . . . 6 (𝑦 = 𝑃 → (𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈)))
1716anbi1d 629 . . . . 5 (𝑦 = 𝑃 → ((𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ((𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴)))
18 anass 468 . . . . 5 (((𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1917, 18bitrdi 286 . . . 4 (𝑦 = 𝑃 → ((𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2019rexbidv2 3223 . . 3 (𝑦 = 𝑃 → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2120rspccva 3551 . 2 ((∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴𝑃𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))
228, 21stoic3 1780 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  neicnei 22156  𝑛-Locally cnlly 22524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-nlly 22526
This theorem is referenced by:  nlly2i  22535  llycmpkgen  22611
  Copyright terms: Public domain W3C validator