MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyi Structured version   Visualization version   GIF version

Theorem nllyi 22978
Description: The property of an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyi ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ π‘ˆ ∈ 𝐽 ∧ 𝑃 ∈ π‘ˆ) β†’ βˆƒπ‘’ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑒 βŠ† π‘ˆ ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴))
Distinct variable groups:   𝑒,𝐴   𝑒,𝑃   𝑒,π‘ˆ   𝑒,𝐽

Proof of Theorem nllyi
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 22972 . . . 4 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝐽 β†Ύt 𝑒) ∈ 𝐴))
21simprbi 497 . . 3 (𝐽 ∈ 𝑛-Locally 𝐴 β†’ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝐽 β†Ύt 𝑒) ∈ 𝐴)
3 pweq 4616 . . . . . . 7 (π‘₯ = π‘ˆ β†’ 𝒫 π‘₯ = 𝒫 π‘ˆ)
43ineq2d 4212 . . . . . 6 (π‘₯ = π‘ˆ β†’ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘₯) = (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ))
54rexeqdv 3326 . . . . 5 (π‘₯ = π‘ˆ β†’ (βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝐽 β†Ύt 𝑒) ∈ 𝐴 ↔ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ)(𝐽 β†Ύt 𝑒) ∈ 𝐴))
65raleqbi1dv 3333 . . . 4 (π‘₯ = π‘ˆ β†’ (βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝐽 β†Ύt 𝑒) ∈ 𝐴 ↔ βˆ€π‘¦ ∈ π‘ˆ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ)(𝐽 β†Ύt 𝑒) ∈ 𝐴))
76rspccva 3611 . . 3 ((βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝐽 β†Ύt 𝑒) ∈ 𝐴 ∧ π‘ˆ ∈ 𝐽) β†’ βˆ€π‘¦ ∈ π‘ˆ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ)(𝐽 β†Ύt 𝑒) ∈ 𝐴)
82, 7sylan 580 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ π‘ˆ ∈ 𝐽) β†’ βˆ€π‘¦ ∈ π‘ˆ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ)(𝐽 β†Ύt 𝑒) ∈ 𝐴)
9 elin 3964 . . . . . . 7 (𝑒 ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ) ↔ (𝑒 ∈ ((neiβ€˜π½)β€˜{𝑦}) ∧ 𝑒 ∈ 𝒫 π‘ˆ))
10 sneq 4638 . . . . . . . . . 10 (𝑦 = 𝑃 β†’ {𝑦} = {𝑃})
1110fveq2d 6895 . . . . . . . . 9 (𝑦 = 𝑃 β†’ ((neiβ€˜π½)β€˜{𝑦}) = ((neiβ€˜π½)β€˜{𝑃}))
1211eleq2d 2819 . . . . . . . 8 (𝑦 = 𝑃 β†’ (𝑒 ∈ ((neiβ€˜π½)β€˜{𝑦}) ↔ 𝑒 ∈ ((neiβ€˜π½)β€˜{𝑃})))
13 velpw 4607 . . . . . . . . 9 (𝑒 ∈ 𝒫 π‘ˆ ↔ 𝑒 βŠ† π‘ˆ)
1413a1i 11 . . . . . . . 8 (𝑦 = 𝑃 β†’ (𝑒 ∈ 𝒫 π‘ˆ ↔ 𝑒 βŠ† π‘ˆ))
1512, 14anbi12d 631 . . . . . . 7 (𝑦 = 𝑃 β†’ ((𝑒 ∈ ((neiβ€˜π½)β€˜{𝑦}) ∧ 𝑒 ∈ 𝒫 π‘ˆ) ↔ (𝑒 ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ 𝑒 βŠ† π‘ˆ)))
169, 15bitrid 282 . . . . . 6 (𝑦 = 𝑃 β†’ (𝑒 ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ) ↔ (𝑒 ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ 𝑒 βŠ† π‘ˆ)))
1716anbi1d 630 . . . . 5 (𝑦 = 𝑃 β†’ ((𝑒 ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ) ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴) ↔ ((𝑒 ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ 𝑒 βŠ† π‘ˆ) ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴)))
18 anass 469 . . . . 5 (((𝑒 ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ 𝑒 βŠ† π‘ˆ) ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴) ↔ (𝑒 ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝑒 βŠ† π‘ˆ ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴)))
1917, 18bitrdi 286 . . . 4 (𝑦 = 𝑃 β†’ ((𝑒 ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ) ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴) ↔ (𝑒 ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝑒 βŠ† π‘ˆ ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴))))
2019rexbidv2 3174 . . 3 (𝑦 = 𝑃 β†’ (βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ)(𝐽 β†Ύt 𝑒) ∈ 𝐴 ↔ βˆƒπ‘’ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑒 βŠ† π‘ˆ ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴)))
2120rspccva 3611 . 2 ((βˆ€π‘¦ ∈ π‘ˆ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘ˆ)(𝐽 β†Ύt 𝑒) ∈ 𝐴 ∧ 𝑃 ∈ π‘ˆ) β†’ βˆƒπ‘’ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑒 βŠ† π‘ˆ ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴))
228, 21stoic3 1778 1 ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ π‘ˆ ∈ 𝐽 ∧ 𝑃 ∈ π‘ˆ) β†’ βˆƒπ‘’ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑒 βŠ† π‘ˆ ∧ (𝐽 β†Ύt 𝑒) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  {csn 4628  β€˜cfv 6543  (class class class)co 7408   β†Ύt crest 17365  Topctop 22394  neicnei 22600  π‘›-Locally cnlly 22968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-nlly 22970
This theorem is referenced by:  nlly2i  22979  llycmpkgen  23055
  Copyright terms: Public domain W3C validator