Step | Hyp | Ref
| Expression |
1 | | isnlly 22159 |
. . . 4
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
2 | 1 | simprbi 501 |
. . 3
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴) |
3 | | pweq 4508 |
. . . . . . 7
⊢ (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈) |
4 | 3 | ineq2d 4118 |
. . . . . 6
⊢ (𝑥 = 𝑈 → (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)) |
5 | 4 | rexeqdv 3331 |
. . . . 5
⊢ (𝑥 = 𝑈 → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
6 | 5 | raleqbi1dv 3322 |
. . . 4
⊢ (𝑥 = 𝑈 → (∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴 ↔ ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
7 | 6 | rspccva 3541 |
. . 3
⊢
((∀𝑥 ∈
𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴 ∧ 𝑈 ∈ 𝐽) → ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽 ↾t 𝑢) ∈ 𝐴) |
8 | 2, 7 | sylan 584 |
. 2
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽) → ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽 ↾t 𝑢) ∈ 𝐴) |
9 | | elin 3875 |
. . . . . . 7
⊢ (𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ∧ 𝑢 ∈ 𝒫 𝑈)) |
10 | | sneq 4530 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑃 → {𝑦} = {𝑃}) |
11 | 10 | fveq2d 6660 |
. . . . . . . . 9
⊢ (𝑦 = 𝑃 → ((nei‘𝐽)‘{𝑦}) = ((nei‘𝐽)‘{𝑃})) |
12 | 11 | eleq2d 2838 |
. . . . . . . 8
⊢ (𝑦 = 𝑃 → (𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ↔ 𝑢 ∈ ((nei‘𝐽)‘{𝑃}))) |
13 | | velpw 4497 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝒫 𝑈 ↔ 𝑢 ⊆ 𝑈) |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ (𝑦 = 𝑃 → (𝑢 ∈ 𝒫 𝑈 ↔ 𝑢 ⊆ 𝑈)) |
15 | 12, 14 | anbi12d 634 |
. . . . . . 7
⊢ (𝑦 = 𝑃 → ((𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ∧ 𝑢 ∈ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢 ⊆ 𝑈))) |
16 | 9, 15 | syl5bb 286 |
. . . . . 6
⊢ (𝑦 = 𝑃 → (𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢 ⊆ 𝑈))) |
17 | 16 | anbi1d 633 |
. . . . 5
⊢ (𝑦 = 𝑃 → ((𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ ((𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢 ⊆ 𝑈) ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
18 | | anass 473 |
. . . . 5
⊢ (((𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢 ⊆ 𝑈) ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
19 | 17, 18 | bitrdi 290 |
. . . 4
⊢ (𝑦 = 𝑃 → ((𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |
20 | 19 | rexbidv2 3220 |
. . 3
⊢ (𝑦 = 𝑃 → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽 ↾t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
21 | 20 | rspccva 3541 |
. 2
⊢
((∀𝑦 ∈
𝑈 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽 ↾t 𝑢) ∈ 𝐴 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
22 | 8, 21 | stoic3 1779 |
1
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |