MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoini Structured version   Visualization version   GIF version

Theorem isoini 7272
Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
Assertion
Ref Expression
isoini ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))

Proof of Theorem isoini
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima2 6011 . 2 (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦}
2 elin 3918 . . . 4 (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ (𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})))
3 isof1o 7257 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1ofo 6770 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
5 forn 6738 . . . . . . . . . 10 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
65eleq2d 2817 . . . . . . . . 9 (𝐻:𝐴onto𝐵 → (𝑦 ∈ ran 𝐻𝑦𝐵))
73, 4, 63syl 18 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻𝑦𝐵))
8 f1ofn 6764 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
9 fvelrnb 6882 . . . . . . . . 9 (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
103, 8, 93syl 18 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
117, 10bitr3d 281 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦𝐵 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
12 fvex 6835 . . . . . . . 8 (𝐻𝐷) ∈ V
13 vex 3440 . . . . . . . . 9 𝑦 ∈ V
1413eliniseg 6043 . . . . . . . 8 ((𝐻𝐷) ∈ V → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1512, 14mp1i 13 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1611, 15anbi12d 632 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
1716adantr 480 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
18 elin 3918 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})))
19 vex 3440 . . . . . . . . . . . . . 14 𝑥 ∈ V
2019eliniseg 6043 . . . . . . . . . . . . 13 (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
2120anbi2d 630 . . . . . . . . . . . 12 (𝐷𝐴 → ((𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2218, 21bitrid 283 . . . . . . . . . . 11 (𝐷𝐴 → (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2322anbi1d 631 . . . . . . . . . 10 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦)))
24 anass 468 . . . . . . . . . 10 (((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)))
2523, 24bitrdi 287 . . . . . . . . 9 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
2625adantl 481 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
27 isorel 7260 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
283, 8syl 17 . . . . . . . . . . . . . . . 16 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
29 fnbrfvb 6872 . . . . . . . . . . . . . . . . 17 ((𝐻 Fn 𝐴𝑥𝐴) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
3029bicomd 223 . . . . . . . . . . . . . . . 16 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3128, 30sylan 580 . . . . . . . . . . . . . . 15 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3231adantrr 717 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3327, 32anbi12d 632 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦)))
34 ancom 460 . . . . . . . . . . . . . 14 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)))
35 breq1 5094 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = 𝑦 → ((𝐻𝑥)𝑆(𝐻𝐷) ↔ 𝑦𝑆(𝐻𝐷)))
3635pm5.32i 574 . . . . . . . . . . . . . 14 (((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
3734, 36bitri 275 . . . . . . . . . . . . 13 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
3833, 37bitrdi 287 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
3938exp32 420 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
4039com23 86 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷𝐴 → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
4140imp 406 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4241pm5.32d 577 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4326, 42bitrd 279 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4443rexbidv2 3152 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
45 r19.41v 3162 . . . . . 6 (∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
4644, 45bitrdi 287 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
4717, 46bitr4d 282 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
482, 47bitrid 283 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
4948eqabdv 2864 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦})
501, 49eqtr4id 2785 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  cin 3901  {csn 4576   class class class wbr 5091  ccnv 5615  ran crn 5617  cima 5619   Fn wfn 6476  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490
This theorem is referenced by:  isoini2  7273  isoselem  7275  infxpenlem  9901
  Copyright terms: Public domain W3C validator