Step | Hyp | Ref
| Expression |
1 | | dfima2 5960 |
. 2
⊢ (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦} |
2 | | elin 3899 |
. . . 4
⊢ (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
3 | | isof1o 7174 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
4 | | f1ofo 6707 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–onto→𝐵) |
5 | | forn 6675 |
. . . . . . . . . 10
⊢ (𝐻:𝐴–onto→𝐵 → ran 𝐻 = 𝐵) |
6 | 5 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝐻:𝐴–onto→𝐵 → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
7 | 3, 4, 6 | 3syl 18 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
8 | | f1ofn 6701 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
9 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
10 | 3, 8, 9 | 3syl 18 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
11 | 7, 10 | bitr3d 280 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
12 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐻‘𝐷) ∈ V |
13 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
14 | 13 | eliniseg 5991 |
. . . . . . . 8
⊢ ((𝐻‘𝐷) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
15 | 12, 14 | mp1i 13 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
16 | 11, 15 | anbi12d 630 |
. . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
18 | | elin 3899 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
19 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
20 | 19 | eliniseg 5991 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
21 | 20 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
22 | 18, 21 | syl5bb 282 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
23 | 22 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦))) |
24 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦))) |
25 | 23, 24 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
26 | 25 | adantl 481 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
27 | | isorel 7177 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
28 | 3, 8 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴) |
29 | | fnbrfvb 6804 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
30 | 29 | bicomd 222 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
31 | 28, 30 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
32 | 31 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
33 | 27, 32 | anbi12d 630 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦))) |
34 | | ancom 460 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
35 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝑥) = 𝑦 → ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ↔ 𝑦𝑆(𝐻‘𝐷))) |
36 | 35 | pm5.32i 574 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷)) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
37 | 34, 36 | bitri 274 |
. . . . . . . . . . . . 13
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
38 | 33, 37 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
39 | 38 | exp32 420 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
40 | 39 | com23 86 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
41 | 40 | imp 406 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
42 | 41 | pm5.32d 576 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
43 | 26, 42 | bitrd 278 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
44 | 43 | rexbidv2 3223 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥 ∈ 𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
45 | | r19.41v 3273 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
46 | 44, 45 | bitrdi 286 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
47 | 17, 46 | bitr4d 281 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
48 | 2, 47 | syl5bb 282 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
49 | 48 | abbi2dv 2876 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦}) |
50 | 1, 49 | eqtr4id 2798 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) |