MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoini Structured version   Visualization version   GIF version

Theorem isoini 6954
Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
Assertion
Ref Expression
isoini ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))

Proof of Theorem isoini
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 4090 . . . 4 (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ (𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})))
2 isof1o 6939 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
3 f1ofo 6490 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
4 forn 6461 . . . . . . . . . 10 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
54eleq2d 2868 . . . . . . . . 9 (𝐻:𝐴onto𝐵 → (𝑦 ∈ ran 𝐻𝑦𝐵))
62, 3, 53syl 18 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻𝑦𝐵))
7 f1ofn 6484 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
8 fvelrnb 6594 . . . . . . . . 9 (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
92, 7, 83syl 18 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
106, 9bitr3d 282 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦𝐵 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
11 fvex 6551 . . . . . . . 8 (𝐻𝐷) ∈ V
12 vex 3440 . . . . . . . . 9 𝑦 ∈ V
1312eliniseg 5834 . . . . . . . 8 ((𝐻𝐷) ∈ V → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1411, 13mp1i 13 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1510, 14anbi12d 630 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
1615adantr 481 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
17 elin 4090 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})))
18 vex 3440 . . . . . . . . . . . . . 14 𝑥 ∈ V
1918eliniseg 5834 . . . . . . . . . . . . 13 (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
2019anbi2d 628 . . . . . . . . . . . 12 (𝐷𝐴 → ((𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2117, 20syl5bb 284 . . . . . . . . . . 11 (𝐷𝐴 → (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2221anbi1d 629 . . . . . . . . . 10 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦)))
23 anass 469 . . . . . . . . . 10 (((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)))
2422, 23syl6bb 288 . . . . . . . . 9 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
2524adantl 482 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
26 isorel 6942 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
272, 7syl 17 . . . . . . . . . . . . . . . 16 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
28 fnbrfvb 6586 . . . . . . . . . . . . . . . . 17 ((𝐻 Fn 𝐴𝑥𝐴) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
2928bicomd 224 . . . . . . . . . . . . . . . 16 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3027, 29sylan 580 . . . . . . . . . . . . . . 15 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3130adantrr 713 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3226, 31anbi12d 630 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦)))
33 ancom 461 . . . . . . . . . . . . . 14 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)))
34 breq1 4965 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = 𝑦 → ((𝐻𝑥)𝑆(𝐻𝐷) ↔ 𝑦𝑆(𝐻𝐷)))
3534pm5.32i 575 . . . . . . . . . . . . . 14 (((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
3633, 35bitri 276 . . . . . . . . . . . . 13 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
3732, 36syl6bb 288 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
3837exp32 421 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
3938com23 86 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷𝐴 → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
4039imp 407 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4140pm5.32d 577 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4225, 41bitrd 280 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4342rexbidv2 3258 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
44 r19.41v 3308 . . . . . 6 (∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
4543, 44syl6bb 288 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
4616, 45bitr4d 283 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
471, 46syl5bb 284 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
4847abbi2dv 2919 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦})
49 dfima2 5808 . 2 (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦}
5048, 49syl6reqr 2850 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  {cab 2775  wrex 3106  Vcvv 3437  cin 3858  {csn 4472   class class class wbr 4962  ccnv 5442  ran crn 5444  cima 5446   Fn wfn 6220  ontowfo 6223  1-1-ontowf1o 6224  cfv 6225   Isom wiso 6226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234
This theorem is referenced by:  isoini2  6955  isoselem  6957  infxpenlem  9285
  Copyright terms: Public domain W3C validator