Step | Hyp | Ref
| Expression |
1 | | elin 4090 |
. . . 4
⊢ (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
2 | | isof1o 6939 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
3 | | f1ofo 6490 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–onto→𝐵) |
4 | | forn 6461 |
. . . . . . . . . 10
⊢ (𝐻:𝐴–onto→𝐵 → ran 𝐻 = 𝐵) |
5 | 4 | eleq2d 2868 |
. . . . . . . . 9
⊢ (𝐻:𝐴–onto→𝐵 → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
6 | 2, 3, 5 | 3syl 18 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
7 | | f1ofn 6484 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
8 | | fvelrnb 6594 |
. . . . . . . . 9
⊢ (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
9 | 2, 7, 8 | 3syl 18 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
10 | 6, 9 | bitr3d 282 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
11 | | fvex 6551 |
. . . . . . . 8
⊢ (𝐻‘𝐷) ∈ V |
12 | | vex 3440 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
13 | 12 | eliniseg 5834 |
. . . . . . . 8
⊢ ((𝐻‘𝐷) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
14 | 11, 13 | mp1i 13 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
15 | 10, 14 | anbi12d 630 |
. . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
16 | 15 | adantr 481 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
17 | | elin 4090 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
18 | | vex 3440 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
19 | 18 | eliniseg 5834 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
20 | 19 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
21 | 17, 20 | syl5bb 284 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
22 | 21 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦))) |
23 | | anass 469 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦))) |
24 | 22, 23 | syl6bb 288 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
26 | | isorel 6942 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
27 | 2, 7 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴) |
28 | | fnbrfvb 6586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
29 | 28 | bicomd 224 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
30 | 27, 29 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
31 | 30 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
32 | 26, 31 | anbi12d 630 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦))) |
33 | | ancom 461 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
34 | | breq1 4965 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝑥) = 𝑦 → ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ↔ 𝑦𝑆(𝐻‘𝐷))) |
35 | 34 | pm5.32i 575 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷)) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
36 | 33, 35 | bitri 276 |
. . . . . . . . . . . . 13
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
37 | 32, 36 | syl6bb 288 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
38 | 37 | exp32 421 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
39 | 38 | com23 86 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
40 | 39 | imp 407 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
41 | 40 | pm5.32d 577 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
42 | 25, 41 | bitrd 280 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
43 | 42 | rexbidv2 3258 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥 ∈ 𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
44 | | r19.41v 3308 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
45 | 43, 44 | syl6bb 288 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
46 | 16, 45 | bitr4d 283 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
47 | 1, 46 | syl5bb 284 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
48 | 47 | abbi2dv 2919 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦}) |
49 | | dfima2 5808 |
. 2
⊢ (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦} |
50 | 48, 49 | syl6reqr 2850 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) |