MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem5 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem5 18086
Description: Lemma 5 for sgrp2nmnd 18087: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem5 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem sgrp2nmndlem5
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 13751 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 mgm2nsgrp.b . . . . . . . 8 (Base‘𝑀) = 𝑆
4 sgrp2nmnd.o . . . . . . . 8 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
5 eqid 2819 . . . . . . . 8 (+g𝑀) = (+g𝑀)
61, 3, 4, 5sgrp2nmndlem2 18081 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐵) = 𝐴)
763adant3 1126 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) = 𝐴)
8 simp3 1132 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
97, 8eqnetrd 3081 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) ≠ 𝐵)
109olcd 872 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
11 oveq2 7156 . . . . . . 7 (𝑦 = 𝐴 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐴))
12 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 3075 . . . . . 6 (𝑦 = 𝐴 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐴) ≠ 𝐴))
14 oveq2 7156 . . . . . . 7 (𝑦 = 𝐵 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐵))
15 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
1614, 15neeq12d 3075 . . . . . 6 (𝑦 = 𝐵 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
1713, 16rexprg 4625 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
18173adant3 1126 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
1910, 18mpbird 259 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦)
201, 3, 4, 5sgrp2nmndlem3 18082 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) = 𝐵)
21 necom 3067 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
22 df-ne 3015 . . . . . . . . . . 11 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
2321, 22sylbb 221 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐵 = 𝐴)
24233ad2ant3 1129 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ 𝐵 = 𝐴)
2524adantr 483 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ 𝐵 = 𝐴)
26 eqeq1 2823 . . . . . . . . 9 ((𝐵(+g𝑀)𝐴) = 𝐵 → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2726adantl 484 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2825, 27mtbird 327 . . . . . . 7 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
2920, 28mpdan 685 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
3029neqned 3021 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) ≠ 𝐴)
3130orcd 871 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
32 oveq2 7156 . . . . . . 7 (𝑦 = 𝐴 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐴))
3332, 12neeq12d 3075 . . . . . 6 (𝑦 = 𝐴 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐴) ≠ 𝐴))
34 oveq2 7156 . . . . . . 7 (𝑦 = 𝐵 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐵))
3534, 15neeq12d 3075 . . . . . 6 (𝑦 = 𝐵 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
3633, 35rexprg 4625 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
37363adant3 1126 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
3831, 37mpbird 259 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)
39 oveq1 7155 . . . . . . 7 (𝑥 = 𝐴 → (𝑥(+g𝑀)𝑦) = (𝐴(+g𝑀)𝑦))
4039neeq1d 3073 . . . . . 6 (𝑥 = 𝐴 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝑦) ≠ 𝑦))
4140rexbidv 3295 . . . . 5 (𝑥 = 𝐴 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦))
42 oveq1 7155 . . . . . . 7 (𝑥 = 𝐵 → (𝑥(+g𝑀)𝑦) = (𝐵(+g𝑀)𝑦))
4342neeq1d 3073 . . . . . 6 (𝑥 = 𝐵 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4443rexbidv 3295 . . . . 5 (𝑥 = 𝐵 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4541, 44ralprg 4624 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
46453adant3 1126 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
4719, 38, 46mpbir2and 711 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦)
483, 1eqtr2i 2843 . . 3 {𝐴, 𝐵} = (Base‘𝑀)
4948, 5isnmnd 17907 . 2 (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦𝑀 ∉ Mnd)
502, 47, 493syl 18 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3014  wnel 3121  wral 3136  wrex 3137  ifcif 4465  {cpr 4561  cfv 6348  (class class class)co 7148  cmpo 7150  2c2 11684  chash 13682  Basecbs 16475  +gcplusg 16557  Mndcmnd 17903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-hash 13683  df-mnd 17904
This theorem is referenced by:  sgrp2nmnd  18087  sgrpnmndex  18089
  Copyright terms: Public domain W3C validator