MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem5 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem5 18832
Description: Lemma 5 for sgrp2nmnd 18833: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem5 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem sgrp2nmndlem5
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 14339 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 mgm2nsgrp.b . . . . . . . 8 (Base‘𝑀) = 𝑆
4 sgrp2nmnd.o . . . . . . . 8 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
5 eqid 2729 . . . . . . . 8 (+g𝑀) = (+g𝑀)
61, 3, 4, 5sgrp2nmndlem2 18827 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐵) = 𝐴)
763adant3 1132 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) = 𝐴)
8 simp3 1138 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
97, 8eqnetrd 2992 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) ≠ 𝐵)
109olcd 874 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
11 oveq2 7377 . . . . . . 7 (𝑦 = 𝐴 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐴))
12 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 2986 . . . . . 6 (𝑦 = 𝐴 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐴) ≠ 𝐴))
14 oveq2 7377 . . . . . . 7 (𝑦 = 𝐵 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐵))
15 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
1614, 15neeq12d 2986 . . . . . 6 (𝑦 = 𝐵 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
1713, 16rexprg 4657 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
18173adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
1910, 18mpbird 257 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦)
201, 3, 4, 5sgrp2nmndlem3 18828 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) = 𝐵)
21 necom 2978 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
22 df-ne 2926 . . . . . . . . . . 11 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
2321, 22sylbb 219 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐵 = 𝐴)
24233ad2ant3 1135 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ 𝐵 = 𝐴)
2524adantr 480 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ 𝐵 = 𝐴)
26 eqeq1 2733 . . . . . . . . 9 ((𝐵(+g𝑀)𝐴) = 𝐵 → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2726adantl 481 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2825, 27mtbird 325 . . . . . . 7 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
2920, 28mpdan 687 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
3029neqned 2932 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) ≠ 𝐴)
3130orcd 873 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
32 oveq2 7377 . . . . . . 7 (𝑦 = 𝐴 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐴))
3332, 12neeq12d 2986 . . . . . 6 (𝑦 = 𝐴 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐴) ≠ 𝐴))
34 oveq2 7377 . . . . . . 7 (𝑦 = 𝐵 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐵))
3534, 15neeq12d 2986 . . . . . 6 (𝑦 = 𝐵 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
3633, 35rexprg 4657 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
37363adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
3831, 37mpbird 257 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)
39 oveq1 7376 . . . . . . 7 (𝑥 = 𝐴 → (𝑥(+g𝑀)𝑦) = (𝐴(+g𝑀)𝑦))
4039neeq1d 2984 . . . . . 6 (𝑥 = 𝐴 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝑦) ≠ 𝑦))
4140rexbidv 3157 . . . . 5 (𝑥 = 𝐴 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦))
42 oveq1 7376 . . . . . . 7 (𝑥 = 𝐵 → (𝑥(+g𝑀)𝑦) = (𝐵(+g𝑀)𝑦))
4342neeq1d 2984 . . . . . 6 (𝑥 = 𝐵 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4443rexbidv 3157 . . . . 5 (𝑥 = 𝐵 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4541, 44ralprg 4656 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
46453adant3 1132 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
4719, 38, 46mpbir2and 713 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦)
483, 1eqtr2i 2753 . . 3 {𝐴, 𝐵} = (Base‘𝑀)
4948, 5isnmnd 18641 . 2 (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦𝑀 ∉ Mnd)
502, 47, 493syl 18 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  ifcif 4484  {cpr 4587  cfv 6499  (class class class)co 7369  cmpo 7371  2c2 12217  chash 14271  Basecbs 17155  +gcplusg 17196  Mndcmnd 18637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-mnd 18638
This theorem is referenced by:  sgrp2nmnd  18833  sgrpnmndex  18835
  Copyright terms: Public domain W3C validator