MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem5 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem5 18907
Description: Lemma 5 for sgrp2nmnd 18908: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem5 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem sgrp2nmndlem5
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 14416 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 mgm2nsgrp.b . . . . . . . 8 (Base‘𝑀) = 𝑆
4 sgrp2nmnd.o . . . . . . . 8 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
5 eqid 2735 . . . . . . . 8 (+g𝑀) = (+g𝑀)
61, 3, 4, 5sgrp2nmndlem2 18902 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐵) = 𝐴)
763adant3 1132 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) = 𝐴)
8 simp3 1138 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
97, 8eqnetrd 2999 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) ≠ 𝐵)
109olcd 874 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
11 oveq2 7413 . . . . . . 7 (𝑦 = 𝐴 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐴))
12 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 2993 . . . . . 6 (𝑦 = 𝐴 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐴) ≠ 𝐴))
14 oveq2 7413 . . . . . . 7 (𝑦 = 𝐵 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐵))
15 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
1614, 15neeq12d 2993 . . . . . 6 (𝑦 = 𝐵 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
1713, 16rexprg 4673 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
18173adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
1910, 18mpbird 257 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦)
201, 3, 4, 5sgrp2nmndlem3 18903 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) = 𝐵)
21 necom 2985 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
22 df-ne 2933 . . . . . . . . . . 11 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
2321, 22sylbb 219 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐵 = 𝐴)
24233ad2ant3 1135 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ 𝐵 = 𝐴)
2524adantr 480 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ 𝐵 = 𝐴)
26 eqeq1 2739 . . . . . . . . 9 ((𝐵(+g𝑀)𝐴) = 𝐵 → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2726adantl 481 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2825, 27mtbird 325 . . . . . . 7 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
2920, 28mpdan 687 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
3029neqned 2939 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) ≠ 𝐴)
3130orcd 873 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
32 oveq2 7413 . . . . . . 7 (𝑦 = 𝐴 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐴))
3332, 12neeq12d 2993 . . . . . 6 (𝑦 = 𝐴 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐴) ≠ 𝐴))
34 oveq2 7413 . . . . . . 7 (𝑦 = 𝐵 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐵))
3534, 15neeq12d 2993 . . . . . 6 (𝑦 = 𝐵 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
3633, 35rexprg 4673 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
37363adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
3831, 37mpbird 257 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)
39 oveq1 7412 . . . . . . 7 (𝑥 = 𝐴 → (𝑥(+g𝑀)𝑦) = (𝐴(+g𝑀)𝑦))
4039neeq1d 2991 . . . . . 6 (𝑥 = 𝐴 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝑦) ≠ 𝑦))
4140rexbidv 3164 . . . . 5 (𝑥 = 𝐴 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦))
42 oveq1 7412 . . . . . . 7 (𝑥 = 𝐵 → (𝑥(+g𝑀)𝑦) = (𝐵(+g𝑀)𝑦))
4342neeq1d 2991 . . . . . 6 (𝑥 = 𝐵 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4443rexbidv 3164 . . . . 5 (𝑥 = 𝐵 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4541, 44ralprg 4672 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
46453adant3 1132 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
4719, 38, 46mpbir2and 713 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦)
483, 1eqtr2i 2759 . . 3 {𝐴, 𝐵} = (Base‘𝑀)
4948, 5isnmnd 18716 . 2 (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦𝑀 ∉ Mnd)
502, 47, 493syl 18 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wnel 3036  wral 3051  wrex 3060  ifcif 4500  {cpr 4603  cfv 6531  (class class class)co 7405  cmpo 7407  2c2 12295  chash 14348  Basecbs 17228  +gcplusg 17271  Mndcmnd 18712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-mnd 18713
This theorem is referenced by:  sgrp2nmnd  18908  sgrpnmndex  18910
  Copyright terms: Public domain W3C validator