MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem5 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem5 18803
Description: Lemma 5 for sgrp2nmnd 18804: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem5 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem sgrp2nmndlem5
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 14305 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 mgm2nsgrp.b . . . . . . . 8 (Base‘𝑀) = 𝑆
4 sgrp2nmnd.o . . . . . . . 8 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
5 eqid 2729 . . . . . . . 8 (+g𝑀) = (+g𝑀)
61, 3, 4, 5sgrp2nmndlem2 18798 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐵) = 𝐴)
763adant3 1132 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) = 𝐴)
8 simp3 1138 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
97, 8eqnetrd 2992 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) ≠ 𝐵)
109olcd 874 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
11 oveq2 7357 . . . . . . 7 (𝑦 = 𝐴 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐴))
12 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 2986 . . . . . 6 (𝑦 = 𝐴 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐴) ≠ 𝐴))
14 oveq2 7357 . . . . . . 7 (𝑦 = 𝐵 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐵))
15 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
1614, 15neeq12d 2986 . . . . . 6 (𝑦 = 𝐵 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
1713, 16rexprg 4649 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
18173adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
1910, 18mpbird 257 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦)
201, 3, 4, 5sgrp2nmndlem3 18799 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) = 𝐵)
21 necom 2978 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
22 df-ne 2926 . . . . . . . . . . 11 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
2321, 22sylbb 219 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐵 = 𝐴)
24233ad2ant3 1135 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ 𝐵 = 𝐴)
2524adantr 480 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ 𝐵 = 𝐴)
26 eqeq1 2733 . . . . . . . . 9 ((𝐵(+g𝑀)𝐴) = 𝐵 → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2726adantl 481 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2825, 27mtbird 325 . . . . . . 7 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
2920, 28mpdan 687 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
3029neqned 2932 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) ≠ 𝐴)
3130orcd 873 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
32 oveq2 7357 . . . . . . 7 (𝑦 = 𝐴 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐴))
3332, 12neeq12d 2986 . . . . . 6 (𝑦 = 𝐴 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐴) ≠ 𝐴))
34 oveq2 7357 . . . . . . 7 (𝑦 = 𝐵 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐵))
3534, 15neeq12d 2986 . . . . . 6 (𝑦 = 𝐵 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
3633, 35rexprg 4649 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
37363adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
3831, 37mpbird 257 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)
39 oveq1 7356 . . . . . . 7 (𝑥 = 𝐴 → (𝑥(+g𝑀)𝑦) = (𝐴(+g𝑀)𝑦))
4039neeq1d 2984 . . . . . 6 (𝑥 = 𝐴 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝑦) ≠ 𝑦))
4140rexbidv 3153 . . . . 5 (𝑥 = 𝐴 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦))
42 oveq1 7356 . . . . . . 7 (𝑥 = 𝐵 → (𝑥(+g𝑀)𝑦) = (𝐵(+g𝑀)𝑦))
4342neeq1d 2984 . . . . . 6 (𝑥 = 𝐵 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4443rexbidv 3153 . . . . 5 (𝑥 = 𝐵 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4541, 44ralprg 4648 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
46453adant3 1132 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
4719, 38, 46mpbir2and 713 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦)
483, 1eqtr2i 2753 . . 3 {𝐴, 𝐵} = (Base‘𝑀)
4948, 5isnmnd 18612 . 2 (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦𝑀 ∉ Mnd)
502, 47, 493syl 18 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  ifcif 4476  {cpr 4579  cfv 6482  (class class class)co 7349  cmpo 7351  2c2 12183  chash 14237  Basecbs 17120  +gcplusg 17161  Mndcmnd 18608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-mnd 18609
This theorem is referenced by:  sgrp2nmnd  18804  sgrpnmndex  18806
  Copyright terms: Public domain W3C validator