Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvrcld Structured version   Visualization version   GIF version

Theorem brfvrcld 42201
Description: If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvrcld.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvrcld (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))

Proof of Theorem brfvrcld
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 42186 . . 3 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
2 brfvrcld.r . . 3 (𝜑𝑅 ∈ V)
3 0nn0 12468 . . . . 5 0 ∈ ℕ0
4 1nn0 12469 . . . . 5 1 ∈ ℕ0
5 prssi 4816 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
63, 4, 5mp2an 690 . . . 4 {0, 1} ⊆ ℕ0
76a1i 11 . . 3 (𝜑 → {0, 1} ⊆ ℕ0)
81, 2, 7brmptiunrelexpd 42193 . 2 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵))
9 oveq2 7400 . . . . 5 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
109breqd 5151 . . . 4 (𝑛 = 0 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟0)𝐵))
11 oveq2 7400 . . . . 5 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
1211breqd 5151 . . . 4 (𝑛 = 1 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟1)𝐵))
1310, 12rexprg 4692 . . 3 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
143, 4, 13mp2an 690 . 2 (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵))
158, 14bitrdi 286 1 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1541  wcel 2106  wrex 3069  Vcvv 3472  wss 3943  {cpr 4623   class class class wbr 5140  cfv 6531  (class class class)co 7392  0cc0 11091  1c1 11092  0cn0 12453  𝑟crelexp 14947  r*crcl 42182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5277  ax-sep 5291  ax-nul 5298  ax-pow 5355  ax-pr 5419  ax-un 7707  ax-cnex 11147  ax-resscn 11148  ax-1cn 11149  ax-icn 11150  ax-addcl 11151  ax-addrcl 11152  ax-mulcl 11153  ax-mulrcl 11154  ax-mulcom 11155  ax-addass 11156  ax-mulass 11157  ax-distr 11158  ax-i2m1 11159  ax-1ne0 11160  ax-1rid 11161  ax-rnegex 11162  ax-rrecex 11163  ax-cnre 11164  ax-pre-lttri 11165  ax-pre-lttrn 11166  ax-pre-ltadd 11167  ax-pre-mulgt0 11168
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3474  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4943  df-iun 4991  df-br 5141  df-opab 5203  df-mpt 5224  df-tr 5258  df-id 5566  df-eprel 5572  df-po 5580  df-so 5581  df-fr 5623  df-we 5625  df-xp 5674  df-rel 5675  df-cnv 5676  df-co 5677  df-dm 5678  df-rn 5679  df-res 5680  df-ima 5681  df-pred 6288  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7348  df-ov 7395  df-oprab 7396  df-mpo 7397  df-om 7838  df-2nd 7957  df-frecs 8247  df-wrecs 8278  df-recs 8352  df-rdg 8391  df-er 8685  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11231  df-mnf 11232  df-xr 11233  df-ltxr 11234  df-le 11235  df-sub 11427  df-neg 11428  df-nn 12194  df-n0 12454  df-z 12540  df-uz 12804  df-seq 13948  df-relexp 14948  df-rcl 42183
This theorem is referenced by:  brfvrcld2  42202
  Copyright terms: Public domain W3C validator