Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvrcld Structured version   Visualization version   GIF version

Theorem brfvrcld 42277
Description: If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvrcld.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvrcld (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))

Proof of Theorem brfvrcld
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 42262 . . 3 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
2 brfvrcld.r . . 3 (𝜑𝑅 ∈ V)
3 0nn0 12471 . . . . 5 0 ∈ ℕ0
4 1nn0 12472 . . . . 5 1 ∈ ℕ0
5 prssi 4818 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
63, 4, 5mp2an 690 . . . 4 {0, 1} ⊆ ℕ0
76a1i 11 . . 3 (𝜑 → {0, 1} ⊆ ℕ0)
81, 2, 7brmptiunrelexpd 42269 . 2 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵))
9 oveq2 7402 . . . . 5 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
109breqd 5153 . . . 4 (𝑛 = 0 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟0)𝐵))
11 oveq2 7402 . . . . 5 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
1211breqd 5153 . . . 4 (𝑛 = 1 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟1)𝐵))
1310, 12rexprg 4694 . . 3 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
143, 4, 13mp2an 690 . 2 (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵))
158, 14bitrdi 286 1 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  wss 3945  {cpr 4625   class class class wbr 5142  cfv 6533  (class class class)co 7394  0cc0 11094  1c1 11095  0cn0 12456  𝑟crelexp 14950  r*crcl 42258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-n0 12457  df-z 12543  df-uz 12807  df-seq 13951  df-relexp 14951  df-rcl 42259
This theorem is referenced by:  brfvrcld2  42278
  Copyright terms: Public domain W3C validator