Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem4 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem4 45844
Description: Lemma 4 for zlmodzxzldep 45845. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem4 𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem zlmodzxzldeplem4
StepHypRef Expression
1 zlmodzxzldep.a . . 3 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2 prex 5355 . . 3 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
31, 2eqeltri 2835 . 2 𝐴 ∈ V
4 zlmodzxzldep.b . . 3 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
5 prex 5355 . . 3 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
64, 5eqeltri 2835 . 2 𝐵 ∈ V
7 2ne0 12077 . . . . 5 2 ≠ 0
8 zlmodzxzldeplem.f . . . . . . . 8 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
98fveq1i 6775 . . . . . . 7 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
10 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
1110, 1, 4zlmodzxzldeplem 45839 . . . . . . . 8 𝐴𝐵
12 2ex 12050 . . . . . . . . 9 2 ∈ V
133, 12fvpr1 7065 . . . . . . . 8 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
1411, 13mp1i 13 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
159, 14eqtrid 2790 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹𝐴) = 2)
1615neeq1d 3003 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹𝐴) ≠ 0 ↔ 2 ≠ 0))
177, 16mpbiri 257 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹𝐴) ≠ 0)
1817orcd 870 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹𝐴) ≠ 0 ∨ (𝐹𝐵) ≠ 0))
19 fveq2 6774 . . . . 5 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
2019neeq1d 3003 . . . 4 (𝑦 = 𝐴 → ((𝐹𝑦) ≠ 0 ↔ (𝐹𝐴) ≠ 0))
21 fveq2 6774 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2221neeq1d 3003 . . . 4 (𝑦 = 𝐵 → ((𝐹𝑦) ≠ 0 ↔ (𝐹𝐵) ≠ 0))
2320, 22rexprg 4632 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0 ↔ ((𝐹𝐴) ≠ 0 ∨ (𝐹𝐵) ≠ 0)))
2418, 23mpbird 256 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0)
253, 6, 24mp2an 689 1 𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  {cpr 4563  cop 4567  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  -cneg 11206  2c2 12028  3c3 12029  4c4 12030  6c6 12032  ringczring 20670   freeLMod cfrlm 20953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-2 12036  df-3 12037
This theorem is referenced by:  zlmodzxzldep  45845
  Copyright terms: Public domain W3C validator