| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for zlmodzxzldep 48497. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| zlmodzxzldeplem.f | ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
| Ref | Expression |
|---|---|
| zlmodzxzldeplem4 | ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 2 | prex 5395 | . . 3 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | . 2 ⊢ 𝐴 ∈ V |
| 4 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 5 | prex 5395 | . . 3 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
| 6 | 4, 5 | eqeltri 2825 | . 2 ⊢ 𝐵 ∈ V |
| 7 | 2ne0 12297 | . . . . 5 ⊢ 2 ≠ 0 | |
| 8 | zlmodzxzldeplem.f | . . . . . . . 8 ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} | |
| 9 | 8 | fveq1i 6862 | . . . . . . 7 ⊢ (𝐹‘𝐴) = ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) |
| 10 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 11 | 10, 1, 4 | zlmodzxzldeplem 48491 | . . . . . . . 8 ⊢ 𝐴 ≠ 𝐵 |
| 12 | 2ex 12270 | . . . . . . . . 9 ⊢ 2 ∈ V | |
| 13 | 3, 12 | fvpr1 7169 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) = 2) |
| 14 | 11, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) = 2) |
| 15 | 9, 14 | eqtrid 2777 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) = 2) |
| 16 | 15 | neeq1d 2985 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ↔ 2 ≠ 0)) |
| 17 | 7, 16 | mpbiri 258 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) ≠ 0) |
| 18 | 17 | orcd 873 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0)) |
| 19 | fveq2 6861 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 20 | 19 | neeq1d 2985 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐴) ≠ 0)) |
| 21 | fveq2 6861 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
| 22 | 21 | neeq1d 2985 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐵) ≠ 0)) |
| 23 | 20, 22 | rexprg 4664 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 ↔ ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0))) |
| 24 | 18, 23 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0) |
| 25 | 3, 6, 24 | mp2an 692 | 1 ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 Vcvv 3450 {cpr 4594 〈cop 4598 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 -cneg 11413 2c2 12248 3c3 12249 4c4 12250 6c6 12252 ℤringczring 21363 freeLMod cfrlm 21662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 |
| This theorem is referenced by: zlmodzxzldep 48497 |
| Copyright terms: Public domain | W3C validator |