![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for zlmodzxzldep 47684. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩} |
zlmodzxzldep.b | ⊢ 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩} |
zlmodzxzldeplem.f | ⊢ 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} |
Ref | Expression |
---|---|
zlmodzxzldeplem4 | ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩} | |
2 | prex 5433 | . . 3 ⊢ {⟨0, 3⟩, ⟨1, 6⟩} ∈ V | |
3 | 1, 2 | eqeltri 2821 | . 2 ⊢ 𝐴 ∈ V |
4 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩} | |
5 | prex 5433 | . . 3 ⊢ {⟨0, 2⟩, ⟨1, 4⟩} ∈ V | |
6 | 4, 5 | eqeltri 2821 | . 2 ⊢ 𝐵 ∈ V |
7 | 2ne0 12346 | . . . . 5 ⊢ 2 ≠ 0 | |
8 | zlmodzxzldeplem.f | . . . . . . . 8 ⊢ 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩} | |
9 | 8 | fveq1i 6895 | . . . . . . 7 ⊢ (𝐹‘𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) |
10 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
11 | 10, 1, 4 | zlmodzxzldeplem 47678 | . . . . . . . 8 ⊢ 𝐴 ≠ 𝐵 |
12 | 2ex 12319 | . . . . . . . . 9 ⊢ 2 ∈ V | |
13 | 3, 12 | fvpr1 7200 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2) |
14 | 11, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2) |
15 | 9, 14 | eqtrid 2777 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) = 2) |
16 | 15 | neeq1d 2990 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ↔ 2 ≠ 0)) |
17 | 7, 16 | mpbiri 257 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) ≠ 0) |
18 | 17 | orcd 871 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0)) |
19 | fveq2 6894 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
20 | 19 | neeq1d 2990 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐴) ≠ 0)) |
21 | fveq2 6894 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
22 | 21 | neeq1d 2990 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐵) ≠ 0)) |
23 | 20, 22 | rexprg 4701 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 ↔ ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0))) |
24 | 18, 23 | mpbird 256 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0) |
25 | 3, 6, 24 | mp2an 690 | 1 ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∃wrex 3060 Vcvv 3463 {cpr 4631 ⟨cop 4635 ‘cfv 6547 (class class class)co 7417 0cc0 11138 1c1 11139 -cneg 11475 2c2 12297 3c3 12298 4c4 12299 6c6 12301 ℤringczring 21376 freeLMod cfrlm 21684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-2 12305 df-3 12306 |
This theorem is referenced by: zlmodzxzldep 47684 |
Copyright terms: Public domain | W3C validator |