Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem4 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem4 48485
Description: Lemma 4 for zlmodzxzldep 48486. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem4 𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem zlmodzxzldeplem4
StepHypRef Expression
1 zlmodzxzldep.a . . 3 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2 prex 5387 . . 3 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
31, 2eqeltri 2824 . 2 𝐴 ∈ V
4 zlmodzxzldep.b . . 3 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
5 prex 5387 . . 3 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
64, 5eqeltri 2824 . 2 𝐵 ∈ V
7 2ne0 12266 . . . . 5 2 ≠ 0
8 zlmodzxzldeplem.f . . . . . . . 8 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
98fveq1i 6841 . . . . . . 7 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
10 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
1110, 1, 4zlmodzxzldeplem 48480 . . . . . . . 8 𝐴𝐵
12 2ex 12239 . . . . . . . . 9 2 ∈ V
133, 12fvpr1 7148 . . . . . . . 8 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
1411, 13mp1i 13 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
159, 14eqtrid 2776 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹𝐴) = 2)
1615neeq1d 2984 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹𝐴) ≠ 0 ↔ 2 ≠ 0))
177, 16mpbiri 258 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹𝐴) ≠ 0)
1817orcd 873 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹𝐴) ≠ 0 ∨ (𝐹𝐵) ≠ 0))
19 fveq2 6840 . . . . 5 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
2019neeq1d 2984 . . . 4 (𝑦 = 𝐴 → ((𝐹𝑦) ≠ 0 ↔ (𝐹𝐴) ≠ 0))
21 fveq2 6840 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2221neeq1d 2984 . . . 4 (𝑦 = 𝐵 → ((𝐹𝑦) ≠ 0 ↔ (𝐹𝐵) ≠ 0))
2320, 22rexprg 4657 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0 ↔ ((𝐹𝐴) ≠ 0 ∨ (𝐹𝐵) ≠ 0)))
2418, 23mpbird 257 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0)
253, 6, 24mp2an 692 1 𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  {cpr 4587  cop 4591  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  -cneg 11382  2c2 12217  3c3 12218  4c4 12219  6c6 12221  ringczring 21388   freeLMod cfrlm 21688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226
This theorem is referenced by:  zlmodzxzldep  48486
  Copyright terms: Public domain W3C validator