Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem4 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem4 45796
Description: Lemma 4 for zlmodzxzldep 45797. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem4 𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem zlmodzxzldeplem4
StepHypRef Expression
1 zlmodzxzldep.a . . 3 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2 prex 5358 . . 3 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
31, 2eqeltri 2836 . 2 𝐴 ∈ V
4 zlmodzxzldep.b . . 3 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
5 prex 5358 . . 3 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
64, 5eqeltri 2836 . 2 𝐵 ∈ V
7 2ne0 12060 . . . . 5 2 ≠ 0
8 zlmodzxzldeplem.f . . . . . . . 8 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
98fveq1i 6769 . . . . . . 7 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
10 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
1110, 1, 4zlmodzxzldeplem 45791 . . . . . . . 8 𝐴𝐵
12 2ex 12033 . . . . . . . . 9 2 ∈ V
133, 12fvpr1 7059 . . . . . . . 8 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
1411, 13mp1i 13 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
159, 14eqtrid 2791 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹𝐴) = 2)
1615neeq1d 3004 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹𝐴) ≠ 0 ↔ 2 ≠ 0))
177, 16mpbiri 257 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹𝐴) ≠ 0)
1817orcd 869 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹𝐴) ≠ 0 ∨ (𝐹𝐵) ≠ 0))
19 fveq2 6768 . . . . 5 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
2019neeq1d 3004 . . . 4 (𝑦 = 𝐴 → ((𝐹𝑦) ≠ 0 ↔ (𝐹𝐴) ≠ 0))
21 fveq2 6768 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2221neeq1d 3004 . . . 4 (𝑦 = 𝐵 → ((𝐹𝑦) ≠ 0 ↔ (𝐹𝐵) ≠ 0))
2320, 22rexprg 4637 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0 ↔ ((𝐹𝐴) ≠ 0 ∨ (𝐹𝐵) ≠ 0)))
2418, 23mpbird 256 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0)
253, 6, 24mp2an 688 1 𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1541  wcel 2109  wne 2944  wrex 3066  Vcvv 3430  {cpr 4568  cop 4572  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856  -cneg 11189  2c2 12011  3c3 12012  4c4 12013  6c6 12015  ringczring 20651   freeLMod cfrlm 20934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-2 12019  df-3 12020
This theorem is referenced by:  zlmodzxzldep  45797
  Copyright terms: Public domain W3C validator