| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for zlmodzxzldep 48604. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| zlmodzxzldeplem.f | ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
| Ref | Expression |
|---|---|
| zlmodzxzldeplem4 | ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 2 | prex 5373 | . . 3 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | . 2 ⊢ 𝐴 ∈ V |
| 4 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 5 | prex 5373 | . . 3 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
| 6 | 4, 5 | eqeltri 2827 | . 2 ⊢ 𝐵 ∈ V |
| 7 | 2ne0 12229 | . . . . 5 ⊢ 2 ≠ 0 | |
| 8 | zlmodzxzldeplem.f | . . . . . . . 8 ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} | |
| 9 | 8 | fveq1i 6823 | . . . . . . 7 ⊢ (𝐹‘𝐴) = ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) |
| 10 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 11 | 10, 1, 4 | zlmodzxzldeplem 48598 | . . . . . . . 8 ⊢ 𝐴 ≠ 𝐵 |
| 12 | 2ex 12202 | . . . . . . . . 9 ⊢ 2 ∈ V | |
| 13 | 3, 12 | fvpr1 7126 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) = 2) |
| 14 | 11, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) = 2) |
| 15 | 9, 14 | eqtrid 2778 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) = 2) |
| 16 | 15 | neeq1d 2987 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ↔ 2 ≠ 0)) |
| 17 | 7, 16 | mpbiri 258 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) ≠ 0) |
| 18 | 17 | orcd 873 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0)) |
| 19 | fveq2 6822 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 20 | 19 | neeq1d 2987 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐴) ≠ 0)) |
| 21 | fveq2 6822 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
| 22 | 21 | neeq1d 2987 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐵) ≠ 0)) |
| 23 | 20, 22 | rexprg 4647 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 ↔ ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0))) |
| 24 | 18, 23 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0) |
| 25 | 3, 6, 24 | mp2an 692 | 1 ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 Vcvv 3436 {cpr 4575 〈cop 4579 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 -cneg 11345 2c2 12180 3c3 12181 4c4 12182 6c6 12184 ℤringczring 21383 freeLMod cfrlm 21683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 |
| This theorem is referenced by: zlmodzxzldep 48604 |
| Copyright terms: Public domain | W3C validator |