![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for zlmodzxzldep 48233. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
zlmodzxzldeplem.f | ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
Ref | Expression |
---|---|
zlmodzxzldeplem4 | ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
2 | prex 5452 | . . 3 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
3 | 1, 2 | eqeltri 2840 | . 2 ⊢ 𝐴 ∈ V |
4 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
5 | prex 5452 | . . 3 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
6 | 4, 5 | eqeltri 2840 | . 2 ⊢ 𝐵 ∈ V |
7 | 2ne0 12397 | . . . . 5 ⊢ 2 ≠ 0 | |
8 | zlmodzxzldeplem.f | . . . . . . . 8 ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} | |
9 | 8 | fveq1i 6921 | . . . . . . 7 ⊢ (𝐹‘𝐴) = ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) |
10 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
11 | 10, 1, 4 | zlmodzxzldeplem 48227 | . . . . . . . 8 ⊢ 𝐴 ≠ 𝐵 |
12 | 2ex 12370 | . . . . . . . . 9 ⊢ 2 ∈ V | |
13 | 3, 12 | fvpr1 7227 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) = 2) |
14 | 11, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 2〉, 〈𝐵, -3〉}‘𝐴) = 2) |
15 | 9, 14 | eqtrid 2792 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) = 2) |
16 | 15 | neeq1d 3006 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ↔ 2 ≠ 0)) |
17 | 7, 16 | mpbiri 258 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘𝐴) ≠ 0) |
18 | 17 | orcd 872 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0)) |
19 | fveq2 6920 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
20 | 19 | neeq1d 3006 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐴) ≠ 0)) |
21 | fveq2 6920 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
22 | 21 | neeq1d 3006 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝑦) ≠ 0 ↔ (𝐹‘𝐵) ≠ 0)) |
23 | 20, 22 | rexprg 4721 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 ↔ ((𝐹‘𝐴) ≠ 0 ∨ (𝐹‘𝐵) ≠ 0))) |
24 | 18, 23 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0) |
25 | 3, 6, 24 | mp2an 691 | 1 ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 Vcvv 3488 {cpr 4650 〈cop 4654 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 -cneg 11521 2c2 12348 3c3 12349 4c4 12350 6c6 12352 ℤringczring 21480 freeLMod cfrlm 21789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 df-3 12357 |
This theorem is referenced by: zlmodzxzldep 48233 |
Copyright terms: Public domain | W3C validator |