| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wdom2d2 | Structured version Visualization version GIF version | ||
| Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| wdom2d2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| wdom2d2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wdom2d2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| wdom2d2.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
| Ref | Expression |
|---|---|
| wdom2d2 | ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdom2d2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | wdom2d2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | wdom2d2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 4 | 2, 3 | xpexd 7730 | . 2 ⊢ (𝜑 → (𝐵 × 𝐶) ∈ V) |
| 5 | wdom2d2.o | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) | |
| 6 | nfcsb1v 3889 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
| 7 | 6 | nfeq2 2910 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
| 8 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑧(1st ‘𝑤) | |
| 9 | nfcsb1v 3889 | . . . . . 6 ⊢ Ⅎ𝑧⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
| 10 | 8, 9 | nfcsbw 3891 | . . . . 5 ⊢ Ⅎ𝑧⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
| 11 | 10 | nfeq2 2910 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
| 12 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤 𝑥 = 𝑋 | |
| 13 | csbopeq1a 8032 | . . . . 5 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 = 𝑋) | |
| 14 | 13 | eqeq2d 2741 | . . . 4 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ 𝑥 = 𝑋)) |
| 15 | 7, 11, 12, 14 | rexxpf 5814 | . . 3 ⊢ (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
| 16 | 5, 15 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋) |
| 17 | 1, 4, 16 | wdom2d 9540 | 1 ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ⦋csb 3865 〈cop 4598 class class class wbr 5110 × cxp 5639 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 ≼* cwdom 9524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1st 7971 df-2nd 7972 df-en 8922 df-dom 8923 df-sdom 8924 df-wdom 9525 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |