Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wdom2d2 Structured version   Visualization version   GIF version

Theorem wdom2d2 42992
Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.)
Hypotheses
Ref Expression
wdom2d2.a (𝜑𝐴𝑉)
wdom2d2.b (𝜑𝐵𝑊)
wdom2d2.c (𝜑𝐶𝑋)
wdom2d2.o ((𝜑𝑥𝐴) → ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
Assertion
Ref Expression
wdom2d2 (𝜑𝐴* (𝐵 × 𝐶))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem wdom2d2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wdom2d2.a . 2 (𝜑𝐴𝑉)
2 wdom2d2.b . . 3 (𝜑𝐵𝑊)
3 wdom2d2.c . . 3 (𝜑𝐶𝑋)
42, 3xpexd 7786 . 2 (𝜑 → (𝐵 × 𝐶) ∈ V)
5 wdom2d2.o . . 3 ((𝜑𝑥𝐴) → ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
6 nfcsb1v 3946 . . . . 5 𝑦(1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
76nfeq2 2926 . . . 4 𝑦 𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
8 nfcv 2908 . . . . . 6 𝑧(1st𝑤)
9 nfcsb1v 3946 . . . . . 6 𝑧(2nd𝑤) / 𝑧𝑋
108, 9nfcsbw 3948 . . . . 5 𝑧(1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
1110nfeq2 2926 . . . 4 𝑧 𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
12 nfv 1913 . . . 4 𝑤 𝑥 = 𝑋
13 csbopeq1a 8091 . . . . 5 (𝑤 = ⟨𝑦, 𝑧⟩ → (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋 = 𝑋)
1413eqeq2d 2751 . . . 4 (𝑤 = ⟨𝑦, 𝑧⟩ → (𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋𝑥 = 𝑋))
157, 11, 12, 14rexxpf 5872 . . 3 (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋 ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
165, 15sylibr 234 . 2 ((𝜑𝑥𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋)
171, 4, 16wdom2d 9649 1 (𝜑𝐴* (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  csb 3921  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  1st c1st 8028  2nd c2nd 8029  * cwdom 9633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-en 9004  df-dom 9005  df-sdom 9006  df-wdom 9634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator