| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wdom2d2 | Structured version Visualization version GIF version | ||
| Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| wdom2d2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| wdom2d2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wdom2d2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| wdom2d2.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
| Ref | Expression |
|---|---|
| wdom2d2 | ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdom2d2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | wdom2d2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | wdom2d2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 4 | 2, 3 | xpexd 7745 | . 2 ⊢ (𝜑 → (𝐵 × 𝐶) ∈ V) |
| 5 | wdom2d2.o | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) | |
| 6 | nfcsb1v 3898 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
| 7 | 6 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
| 8 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑧(1st ‘𝑤) | |
| 9 | nfcsb1v 3898 | . . . . . 6 ⊢ Ⅎ𝑧⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
| 10 | 8, 9 | nfcsbw 3900 | . . . . 5 ⊢ Ⅎ𝑧⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
| 11 | 10 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
| 12 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤 𝑥 = 𝑋 | |
| 13 | csbopeq1a 8049 | . . . . 5 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 = 𝑋) | |
| 14 | 13 | eqeq2d 2746 | . . . 4 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ 𝑥 = 𝑋)) |
| 15 | 7, 11, 12, 14 | rexxpf 5827 | . . 3 ⊢ (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
| 16 | 5, 15 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋) |
| 17 | 1, 4, 16 | wdom2d 9594 | 1 ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ⦋csb 3874 〈cop 4607 class class class wbr 5119 × cxp 5652 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 ≼* cwdom 9578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1st 7988 df-2nd 7989 df-en 8960 df-dom 8961 df-sdom 8962 df-wdom 9579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |