Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wdom2d2 Structured version   Visualization version   GIF version

Theorem wdom2d2 43024
Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.)
Hypotheses
Ref Expression
wdom2d2.a (𝜑𝐴𝑉)
wdom2d2.b (𝜑𝐵𝑊)
wdom2d2.c (𝜑𝐶𝑋)
wdom2d2.o ((𝜑𝑥𝐴) → ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
Assertion
Ref Expression
wdom2d2 (𝜑𝐴* (𝐵 × 𝐶))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem wdom2d2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wdom2d2.a . 2 (𝜑𝐴𝑉)
2 wdom2d2.b . . 3 (𝜑𝐵𝑊)
3 wdom2d2.c . . 3 (𝜑𝐶𝑋)
42, 3xpexd 7727 . 2 (𝜑 → (𝐵 × 𝐶) ∈ V)
5 wdom2d2.o . . 3 ((𝜑𝑥𝐴) → ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
6 nfcsb1v 3886 . . . . 5 𝑦(1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
76nfeq2 2909 . . . 4 𝑦 𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
8 nfcv 2891 . . . . . 6 𝑧(1st𝑤)
9 nfcsb1v 3886 . . . . . 6 𝑧(2nd𝑤) / 𝑧𝑋
108, 9nfcsbw 3888 . . . . 5 𝑧(1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
1110nfeq2 2909 . . . 4 𝑧 𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
12 nfv 1914 . . . 4 𝑤 𝑥 = 𝑋
13 csbopeq1a 8029 . . . . 5 (𝑤 = ⟨𝑦, 𝑧⟩ → (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋 = 𝑋)
1413eqeq2d 2740 . . . 4 (𝑤 = ⟨𝑦, 𝑧⟩ → (𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋𝑥 = 𝑋))
157, 11, 12, 14rexxpf 5811 . . 3 (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋 ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
165, 15sylibr 234 . 2 ((𝜑𝑥𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋)
171, 4, 16wdom2d 9533 1 (𝜑𝐴* (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  csb 3862  cop 4595   class class class wbr 5107   × cxp 5636  cfv 6511  1st c1st 7966  2nd c2nd 7967  * cwdom 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1st 7968  df-2nd 7969  df-en 8919  df-dom 8920  df-sdom 8921  df-wdom 9518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator