Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wdom2d2 | Structured version Visualization version GIF version |
Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
wdom2d2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
wdom2d2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wdom2d2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
wdom2d2.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
Ref | Expression |
---|---|
wdom2d2 | ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdom2d2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | wdom2d2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | wdom2d2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
4 | 2, 3 | xpexd 7601 | . 2 ⊢ (𝜑 → (𝐵 × 𝐶) ∈ V) |
5 | wdom2d2.o | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) | |
6 | nfcsb1v 3857 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
7 | 6 | nfeq2 2924 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
8 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑧(1st ‘𝑤) | |
9 | nfcsb1v 3857 | . . . . . 6 ⊢ Ⅎ𝑧⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
10 | 8, 9 | nfcsbw 3859 | . . . . 5 ⊢ Ⅎ𝑧⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
11 | 10 | nfeq2 2924 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
12 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑤 𝑥 = 𝑋 | |
13 | csbopeq1a 7891 | . . . . 5 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 = 𝑋) | |
14 | 13 | eqeq2d 2749 | . . . 4 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ 𝑥 = 𝑋)) |
15 | 7, 11, 12, 14 | rexxpf 5756 | . . 3 ⊢ (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
16 | 5, 15 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋) |
17 | 1, 4, 16 | wdom2d 9339 | 1 ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ⦋csb 3832 〈cop 4567 class class class wbr 5074 × cxp 5587 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 ≼* cwdom 9323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1st 7831 df-2nd 7832 df-en 8734 df-dom 8735 df-sdom 8736 df-wdom 9324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |