![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wdom2d2 | Structured version Visualization version GIF version |
Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
wdom2d2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
wdom2d2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wdom2d2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
wdom2d2.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
Ref | Expression |
---|---|
wdom2d2 | ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdom2d2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | wdom2d2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | wdom2d2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
4 | 2, 3 | xpexd 7738 | . 2 ⊢ (𝜑 → (𝐵 × 𝐶) ∈ V) |
5 | wdom2d2.o | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) | |
6 | nfcsb1v 3919 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
7 | 6 | nfeq2 2921 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
8 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑧(1st ‘𝑤) | |
9 | nfcsb1v 3919 | . . . . . 6 ⊢ Ⅎ𝑧⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
10 | 8, 9 | nfcsbw 3921 | . . . . 5 ⊢ Ⅎ𝑧⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
11 | 10 | nfeq2 2921 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
12 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑤 𝑥 = 𝑋 | |
13 | csbopeq1a 8036 | . . . . 5 ⊢ (𝑤 = ⟨𝑦, 𝑧⟩ → ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 = 𝑋) | |
14 | 13 | eqeq2d 2744 | . . . 4 ⊢ (𝑤 = ⟨𝑦, 𝑧⟩ → (𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ 𝑥 = 𝑋)) |
15 | 7, 11, 12, 14 | rexxpf 5848 | . . 3 ⊢ (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
16 | 5, 15 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋) |
17 | 1, 4, 16 | wdom2d 9575 | 1 ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 Vcvv 3475 ⦋csb 3894 ⟨cop 4635 class class class wbr 5149 × cxp 5675 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 ≼* cwdom 9559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1st 7975 df-2nd 7976 df-en 8940 df-dom 8941 df-sdom 8942 df-wdom 9560 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |