Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wdom2d2 Structured version   Visualization version   GIF version

Theorem wdom2d2 41774
Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.)
Hypotheses
Ref Expression
wdom2d2.a (𝜑𝐴𝑉)
wdom2d2.b (𝜑𝐵𝑊)
wdom2d2.c (𝜑𝐶𝑋)
wdom2d2.o ((𝜑𝑥𝐴) → ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
Assertion
Ref Expression
wdom2d2 (𝜑𝐴* (𝐵 × 𝐶))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem wdom2d2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wdom2d2.a . 2 (𝜑𝐴𝑉)
2 wdom2d2.b . . 3 (𝜑𝐵𝑊)
3 wdom2d2.c . . 3 (𝜑𝐶𝑋)
42, 3xpexd 7738 . 2 (𝜑 → (𝐵 × 𝐶) ∈ V)
5 wdom2d2.o . . 3 ((𝜑𝑥𝐴) → ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
6 nfcsb1v 3919 . . . . 5 𝑦(1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
76nfeq2 2921 . . . 4 𝑦 𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
8 nfcv 2904 . . . . . 6 𝑧(1st𝑤)
9 nfcsb1v 3919 . . . . . 6 𝑧(2nd𝑤) / 𝑧𝑋
108, 9nfcsbw 3921 . . . . 5 𝑧(1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
1110nfeq2 2921 . . . 4 𝑧 𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋
12 nfv 1918 . . . 4 𝑤 𝑥 = 𝑋
13 csbopeq1a 8036 . . . . 5 (𝑤 = ⟨𝑦, 𝑧⟩ → (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋 = 𝑋)
1413eqeq2d 2744 . . . 4 (𝑤 = ⟨𝑦, 𝑧⟩ → (𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋𝑥 = 𝑋))
157, 11, 12, 14rexxpf 5848 . . 3 (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋 ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = 𝑋)
165, 15sylibr 233 . 2 ((𝜑𝑥𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = (1st𝑤) / 𝑦(2nd𝑤) / 𝑧𝑋)
171, 4, 16wdom2d 9575 1 (𝜑𝐴* (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3071  Vcvv 3475  csb 3894  cop 4635   class class class wbr 5149   × cxp 5675  cfv 6544  1st c1st 7973  2nd c2nd 7974  * cwdom 9559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1st 7975  df-2nd 7976  df-en 8940  df-dom 8941  df-sdom 8942  df-wdom 9560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator