![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wdom2d2 | Structured version Visualization version GIF version |
Description: Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
wdom2d2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
wdom2d2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wdom2d2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
wdom2d2.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
Ref | Expression |
---|---|
wdom2d2 | ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdom2d2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | wdom2d2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | wdom2d2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
4 | 2, 3 | xpexd 7786 | . 2 ⊢ (𝜑 → (𝐵 × 𝐶) ∈ V) |
5 | wdom2d2.o | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) | |
6 | nfcsb1v 3946 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
7 | 6 | nfeq2 2926 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
8 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑧(1st ‘𝑤) | |
9 | nfcsb1v 3946 | . . . . . 6 ⊢ Ⅎ𝑧⦋(2nd ‘𝑤) / 𝑧⦌𝑋 | |
10 | 8, 9 | nfcsbw 3948 | . . . . 5 ⊢ Ⅎ𝑧⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
11 | 10 | nfeq2 2926 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 |
12 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤 𝑥 = 𝑋 | |
13 | csbopeq1a 8091 | . . . . 5 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 = 𝑋) | |
14 | 13 | eqeq2d 2751 | . . . 4 ⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ 𝑥 = 𝑋)) |
15 | 7, 11, 12, 14 | rexxpf 5872 | . . 3 ⊢ (∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) |
16 | 5, 15 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑤 ∈ (𝐵 × 𝐶)𝑥 = ⦋(1st ‘𝑤) / 𝑦⦌⦋(2nd ‘𝑤) / 𝑧⦌𝑋) |
17 | 1, 4, 16 | wdom2d 9649 | 1 ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ⦋csb 3921 〈cop 4654 class class class wbr 5166 × cxp 5698 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 ≼* cwdom 9633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1st 8030 df-2nd 8031 df-en 9004 df-dom 9005 df-sdom 9006 df-wdom 9634 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |