MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0edg0rgrb Structured version   Visualization version   GIF version

Theorem uhgr0edg0rgrb 29551
Description: A hypergraph is 0-regular iff it has no edges. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.)
Assertion
Ref Expression
uhgr0edg0rgrb (𝐺 ∈ UHGraph → (𝐺 RegGraph 0 ↔ (Edg‘𝐺) = ∅))

Proof of Theorem uhgr0edg0rgrb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2731 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2uhgrvd00 29511 . . . . 5 (𝐺 ∈ UHGraph → (∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0 → (Edg‘𝐺) = ∅))
43com12 32 . . . 4 (∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0 → (𝐺 ∈ UHGraph → (Edg‘𝐺) = ∅))
54adantl 481 . . 3 ((0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0) → (𝐺 ∈ UHGraph → (Edg‘𝐺) = ∅))
6 eqid 2731 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
71, 6rgrprop 29537 . . 3 (𝐺 RegGraph 0 → (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0))
85, 7syl11 33 . 2 (𝐺 ∈ UHGraph → (𝐺 RegGraph 0 → (Edg‘𝐺) = ∅))
9 uhgr0edg0rgr 29550 . . 3 ((𝐺 ∈ UHGraph ∧ (Edg‘𝐺) = ∅) → 𝐺 RegGraph 0)
109ex 412 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ → 𝐺 RegGraph 0))
118, 10impbid 212 1 (𝐺 ∈ UHGraph → (𝐺 RegGraph 0 ↔ (Edg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  c0 4283   class class class wbr 5091  cfv 6481  0cc0 11003  0*cxnn0 12451  Vtxcvtx 28972  Edgcedg 29023  UHGraphcuhgr 29032  VtxDegcvtxdg 29442   RegGraph crgr 29532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-xadd 13009  df-fz 13405  df-hash 14235  df-edg 29024  df-uhgr 29034  df-vtxdg 29443  df-rgr 29534
This theorem is referenced by:  usgr0edg0rusgr  29552
  Copyright terms: Public domain W3C validator