MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csscld Structured version   Visualization version   GIF version

Theorem csscld 23374
Description: A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
csscld.c 𝐶 = (ClSubSp‘𝑊)
csscld.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
csscld ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem csscld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2800 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
2 csscld.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
31, 2cssi 20352 . . . 4 (𝑆𝐶𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
43adantl 474 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
5 eqid 2800 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
65, 1ocvss 20338 . . . . 5 ((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊)
7 eqid 2800 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
8 eqid 2800 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
9 eqid 2800 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
105, 7, 8, 9, 1ocvval 20335 . . . . 5 (((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
116, 10mp1i 13 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
12 riinrab 4787 . . . 4 ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
1311, 12syl6eqr 2852 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
14 cphnlm 23298 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
1514adantr 473 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑊 ∈ NrmMod)
16 nlmngp 22808 . . . . . . 7 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
17 ngptps 22733 . . . . . . 7 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
1815, 16, 173syl 18 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑊 ∈ TopSp)
19 csscld.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
205, 19istps 21066 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
2118, 20sylib 210 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝐽 ∈ (TopOn‘(Base‘𝑊)))
22 toponuni 21046 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝑊)) → (Base‘𝑊) = 𝐽)
2321, 22syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → (Base‘𝑊) = 𝐽)
2423ineq1d 4012 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
254, 13, 243eqtrd 2838 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 = ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
26 topontop 21045 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝑊)) → 𝐽 ∈ Top)
2721, 26syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝐽 ∈ Top)
286sseli 3795 . . . . 5 (𝑦 ∈ ((ocv‘𝑊)‘𝑆) → 𝑦 ∈ (Base‘𝑊))
29 fvex 6425 . . . . . . 7 (0g‘(Scalar‘𝑊)) ∈ V
30 eqid 2800 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦))
3130mptiniseg 5849 . . . . . . 7 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3229, 31ax-mp 5 . . . . . 6 ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
33 eqid 2800 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 simpll 784 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ ℂPreHil)
3521adantr 473 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝐽 ∈ (TopOn‘(Base‘𝑊)))
3635cnmptid 21792 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
37 simpr 478 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
3835, 35, 37cnmptc 21793 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3919, 33, 7, 34, 35, 36, 38cnmpt1ip 23372 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4033cnfldhaus 22915 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
41 cphclm 23315 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
428clm0 23198 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
4341, 42syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
4443ad2antrr 718 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 0 = (0g‘(Scalar‘𝑊)))
45 0cn 10321 . . . . . . . . 9 0 ∈ ℂ
4644, 45syl6eqelr 2888 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
4733cnfldtopon 22913 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4847toponunii 21048 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
4948sncld 21503 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
5040, 46, 49sylancr 582 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
51 cnclima 21400 . . . . . . 7 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5239, 50, 51syl2anc 580 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5332, 52syl5eqelr 2884 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
5428, 53sylan2 587 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ ((ocv‘𝑊)‘𝑆)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
5554ralrimiva 3148 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
56 eqid 2800 . . . 4 𝐽 = 𝐽
5756riincld 21176 . . 3 ((𝐽 ∈ Top ∧ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5827, 55, 57syl2anc 580 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5925, 58eqeltrd 2879 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3090  {crab 3094  Vcvv 3386  cin 3769  wss 3770  {csn 4369   cuni 4629   ciin 4712  cmpt 4923  ccnv 5312  cima 5316  cfv 6102  (class class class)co 6879  cc 10223  0cc0 10225  Basecbs 16183  Scalarcsca 16269  ·𝑖cip 16271  TopOpenctopn 16396  0gc0g 16414  fldccnfld 20067  ocvcocv 20328  ClSubSpccss 20329  Topctop 21025  TopOnctopon 21042  TopSpctps 21064  Clsdccld 21148   Cn ccn 21356  Hauscha 21440  NrmGrpcngp 22709  NrmModcnlm 22712  ℂModcclm 23188  ℂPreHilccph 23292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303  ax-addf 10304  ax-mulf 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-supp 7534  df-tpos 7591  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-ixp 8150  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fsupp 8519  df-fi 8560  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-z 11666  df-dec 11783  df-uz 11930  df-q 12033  df-rp 12074  df-xneg 12192  df-xadd 12193  df-xmul 12194  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-mulr 16280  df-starv 16281  df-sca 16282  df-vsca 16283  df-ip 16284  df-tset 16285  df-ple 16286  df-ds 16288  df-unif 16289  df-hom 16290  df-cco 16291  df-rest 16397  df-topn 16398  df-0g 16416  df-gsum 16417  df-topgen 16418  df-pt 16419  df-prds 16422  df-xrs 16476  df-qtop 16481  df-imas 16482  df-xps 16484  df-mre 16560  df-mrc 16561  df-acs 16563  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-mhm 17649  df-submnd 17650  df-grp 17740  df-minusg 17741  df-sbg 17742  df-mulg 17856  df-subg 17903  df-ghm 17970  df-cntz 18061  df-cmn 18509  df-abl 18510  df-mgp 18805  df-ur 18817  df-ring 18864  df-cring 18865  df-oppr 18938  df-dvdsr 18956  df-unit 18957  df-invr 18987  df-dvr 18998  df-rnghom 19032  df-drng 19066  df-subrg 19095  df-staf 19162  df-srng 19163  df-lmod 19182  df-lmhm 19342  df-lvec 19423  df-sra 19494  df-rgmod 19495  df-psmet 20059  df-xmet 20060  df-met 20061  df-bl 20062  df-mopn 20063  df-cnfld 20068  df-phl 20294  df-ipf 20295  df-ocv 20331  df-css 20332  df-top 21026  df-topon 21043  df-topsp 21065  df-bases 21078  df-cld 21151  df-cn 21359  df-cnp 21360  df-t1 21446  df-haus 21447  df-tx 21693  df-hmeo 21886  df-xms 22452  df-ms 22453  df-tms 22454  df-nm 22714  df-ngp 22715  df-tng 22716  df-nlm 22718  df-clm 23189  df-cph 23294  df-tcph 23295
This theorem is referenced by:  cmscsscms  23498  cldcss  23550
  Copyright terms: Public domain W3C validator