MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csscld Structured version   Visualization version   GIF version

Theorem csscld 24735
Description: A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
csscld.c 𝐶 = (ClSubSp‘𝑊)
csscld.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
csscld ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem csscld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
2 csscld.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
31, 2cssi 21210 . . . 4 (𝑆𝐶𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
43adantl 483 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
5 eqid 2733 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
65, 1ocvss 21196 . . . . 5 ((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊)
7 eqid 2733 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
8 eqid 2733 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
9 eqid 2733 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
105, 7, 8, 9, 1ocvval 21193 . . . . 5 (((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
116, 10mp1i 13 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
12 riinrab 5083 . . . 4 ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
1311, 12eqtr4di 2791 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
14 cphnlm 24658 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
1514adantr 482 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑊 ∈ NrmMod)
16 nlmngp 24163 . . . . . . 7 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
17 ngptps 24080 . . . . . . 7 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
1815, 16, 173syl 18 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑊 ∈ TopSp)
19 csscld.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
205, 19istps 22405 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
2118, 20sylib 217 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝐽 ∈ (TopOn‘(Base‘𝑊)))
22 toponuni 22385 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝑊)) → (Base‘𝑊) = 𝐽)
2321, 22syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → (Base‘𝑊) = 𝐽)
2423ineq1d 4209 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
254, 13, 243eqtrd 2777 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 = ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
26 topontop 22384 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝑊)) → 𝐽 ∈ Top)
2721, 26syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝐽 ∈ Top)
286sseli 3976 . . . . 5 (𝑦 ∈ ((ocv‘𝑊)‘𝑆) → 𝑦 ∈ (Base‘𝑊))
29 fvex 6894 . . . . . . 7 (0g‘(Scalar‘𝑊)) ∈ V
30 eqid 2733 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦))
3130mptiniseg 6230 . . . . . . 7 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3229, 31ax-mp 5 . . . . . 6 ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
33 eqid 2733 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 simpll 766 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ ℂPreHil)
3521adantr 482 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝐽 ∈ (TopOn‘(Base‘𝑊)))
3635cnmptid 23134 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
37 simpr 486 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
3835, 35, 37cnmptc 23135 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3919, 33, 7, 34, 35, 36, 38cnmpt1ip 24733 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4033cnfldhaus 24270 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
41 cphclm 24675 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
428clm0 24557 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
4341, 42syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
4443ad2antrr 725 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 0 = (0g‘(Scalar‘𝑊)))
45 0cn 11193 . . . . . . . . 9 0 ∈ ℂ
4644, 45eqeltrrdi 2843 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
47 unicntop 24271 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
4847sncld 22844 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
4940, 46, 48sylancr 588 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
50 cnclima 22741 . . . . . . 7 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5139, 49, 50syl2anc 585 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5232, 51eqeltrrid 2839 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
5328, 52sylan2 594 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ ((ocv‘𝑊)‘𝑆)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
5453ralrimiva 3147 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
55 eqid 2733 . . . 4 𝐽 = 𝐽
5655riincld 22517 . . 3 ((𝐽 ∈ Top ∧ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5727, 54, 56syl2anc 585 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5825, 57eqeltrd 2834 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  {crab 3433  Vcvv 3475  cin 3945  wss 3946  {csn 4624   cuni 4904   ciin 4994  cmpt 5227  ccnv 5671  cima 5675  cfv 6535  (class class class)co 7396  cc 11095  0cc0 11097  Basecbs 17131  Scalarcsca 17187  ·𝑖cip 17189  TopOpenctopn 17354  0gc0g 17372  fldccnfld 20918  ocvcocv 21186  ClSubSpccss 21187  Topctop 22364  TopOnctopon 22381  TopSpctps 22403  Clsdccld 22489   Cn ccn 22697  Hauscha 22781  NrmGrpcngp 24055  NrmModcnlm 24058  ℂModcclm 24547  ℂPreHilccph 24652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-iin 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-er 8691  df-map 8810  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-fi 9393  df-sup 9424  df-inf 9425  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13317  df-icc 13318  df-fz 13472  df-fzo 13615  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-hom 17208  df-cco 17209  df-rest 17355  df-topn 17356  df-0g 17374  df-gsum 17375  df-topgen 17376  df-pt 17377  df-prds 17380  df-xrs 17435  df-qtop 17440  df-imas 17441  df-xps 17443  df-mre 17517  df-mrc 17518  df-acs 17520  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-mhm 18658  df-submnd 18659  df-grp 18809  df-minusg 18810  df-sbg 18811  df-mulg 18936  df-subg 18988  df-ghm 19075  df-cntz 19166  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-dvr 20193  df-rnghom 20229  df-drng 20295  df-subrg 20338  df-staf 20430  df-srng 20431  df-lmod 20450  df-lmhm 20610  df-lvec 20691  df-sra 20762  df-rgmod 20763  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-cnfld 20919  df-phl 21152  df-ipf 21153  df-ocv 21189  df-css 21190  df-top 22365  df-topon 22382  df-topsp 22404  df-bases 22418  df-cld 22492  df-cn 22700  df-cnp 22701  df-t1 22787  df-haus 22788  df-tx 23035  df-hmeo 23228  df-xms 23795  df-ms 23796  df-tms 23797  df-nm 24060  df-ngp 24061  df-tng 24062  df-nlm 24064  df-clm 24548  df-cph 24654  df-tcph 24655
This theorem is referenced by:  cmscsscms  24859  cldcss  24927
  Copyright terms: Public domain W3C validator