Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . 5
⊢
(ocv‘𝑊) =
(ocv‘𝑊) |
2 | | csscld.c |
. . . . 5
⊢ 𝐶 = (ClSubSp‘𝑊) |
3 | 1, 2 | cssi 20449 |
. . . 4
⊢ (𝑆 ∈ 𝐶 → 𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆))) |
4 | 3 | adantl 485 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → 𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆))) |
5 | | eqid 2758 |
. . . . . 6
⊢
(Base‘𝑊) =
(Base‘𝑊) |
6 | 5, 1 | ocvss 20435 |
. . . . 5
⊢
((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊) |
7 | | eqid 2758 |
. . . . . 6
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
8 | | eqid 2758 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
9 | | eqid 2758 |
. . . . . 6
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
10 | 5, 7, 8, 9, 1 | ocvval 20432 |
. . . . 5
⊢
(((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
11 | 6, 10 | mp1i 13 |
. . . 4
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
12 | | riinrab 4971 |
. . . 4
⊢
((Base‘𝑊)
∩ ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
13 | 11, 12 | eqtr4di 2811 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = ((Base‘𝑊) ∩ ∩
𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))})) |
14 | | cphnlm 23873 |
. . . . . . . 8
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
NrmMod) |
15 | 14 | adantr 484 |
. . . . . . 7
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → 𝑊 ∈ NrmMod) |
16 | | nlmngp 23379 |
. . . . . . 7
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
17 | | ngptps 23304 |
. . . . . . 7
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp) |
18 | 15, 16, 17 | 3syl 18 |
. . . . . 6
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → 𝑊 ∈ TopSp) |
19 | | csscld.j |
. . . . . . 7
⊢ 𝐽 = (TopOpen‘𝑊) |
20 | 5, 19 | istps 21634 |
. . . . . 6
⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈
(TopOn‘(Base‘𝑊))) |
21 | 18, 20 | sylib 221 |
. . . . 5
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
22 | | toponuni 21614 |
. . . . 5
⊢ (𝐽 ∈
(TopOn‘(Base‘𝑊)) → (Base‘𝑊) = ∪ 𝐽) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → (Base‘𝑊) = ∪ 𝐽) |
24 | 23 | ineq1d 4116 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → ((Base‘𝑊) ∩ ∩
𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (∪ 𝐽 ∩
∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))})) |
25 | 4, 13, 24 | 3eqtrd 2797 |
. 2
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → 𝑆 = (∪ 𝐽 ∩ ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))})) |
26 | | topontop 21613 |
. . . 4
⊢ (𝐽 ∈
(TopOn‘(Base‘𝑊)) → 𝐽 ∈ Top) |
27 | 21, 26 | syl 17 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → 𝐽 ∈ Top) |
28 | 6 | sseli 3888 |
. . . . 5
⊢ (𝑦 ∈ ((ocv‘𝑊)‘𝑆) → 𝑦 ∈ (Base‘𝑊)) |
29 | | fvex 6671 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑊)) ∈ V |
30 | | eqid 2758 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) |
31 | 30 | mptiniseg 6068 |
. . . . . . 7
⊢
((0g‘(Scalar‘𝑊)) ∈ V → (◡(𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) “
{(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
32 | 29, 31 | ax-mp 5 |
. . . . . 6
⊢ (◡(𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) “
{(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
33 | | eqid 2758 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
34 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ ℂPreHil) |
35 | 21 | adantr 484 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
36 | 35 | cnmptid 22361 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
37 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊)) |
38 | 35, 35, 37 | cnmptc 22362 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑦) ∈ (𝐽 Cn 𝐽)) |
39 | 19, 33, 7, 34, 35, 36, 38 | cnmpt1ip 23947 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ∈ (𝐽 Cn
(TopOpen‘ℂfld))) |
40 | 33 | cnfldhaus 23486 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈ Haus |
41 | | cphclm 23890 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
ℂMod) |
42 | 8 | clm0 23773 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ℂMod → 0 =
(0g‘(Scalar‘𝑊))) |
43 | 41, 42 | syl 17 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℂPreHil → 0 =
(0g‘(Scalar‘𝑊))) |
44 | 43 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 0 =
(0g‘(Scalar‘𝑊))) |
45 | | 0cn 10671 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
46 | 44, 45 | eqeltrrdi 2861 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) →
(0g‘(Scalar‘𝑊)) ∈ ℂ) |
47 | | unicntop 23487 |
. . . . . . . . 9
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
48 | 47 | sncld 22071 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Haus ∧
(0g‘(Scalar‘𝑊)) ∈ ℂ) →
{(0g‘(Scalar‘𝑊))} ∈
(Clsd‘(TopOpen‘ℂfld))) |
49 | 40, 46, 48 | sylancr 590 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) →
{(0g‘(Scalar‘𝑊))} ∈
(Clsd‘(TopOpen‘ℂfld))) |
50 | | cnclima 21968 |
. . . . . . 7
⊢ (((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld))
∧ {(0g‘(Scalar‘𝑊))} ∈
(Clsd‘(TopOpen‘ℂfld))) → (◡(𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) “
{(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽)) |
51 | 39, 49, 50 | syl2anc 587 |
. . . . . 6
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (◡(𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) “
{(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽)) |
52 | 32, 51 | eqeltrrid 2857 |
. . . . 5
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) |
53 | 28, 52 | sylan2 595 |
. . . 4
⊢ (((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) ∧ 𝑦 ∈ ((ocv‘𝑊)‘𝑆)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) |
54 | 53 | ralrimiva 3113 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) |
55 | | eqid 2758 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
56 | 55 | riincld 21744 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∩
∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽)) |
57 | 27, 54, 56 | syl2anc 587 |
. 2
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → (∪ 𝐽 ∩ ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽)) |
58 | 25, 57 | eqeltrd 2852 |
1
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑆 ∈ 𝐶) → 𝑆 ∈ (Clsd‘𝐽)) |