MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csscld Structured version   Visualization version   GIF version

Theorem csscld 23767
Description: A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
csscld.c 𝐶 = (ClSubSp‘𝑊)
csscld.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
csscld ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem csscld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
2 csscld.c . . . . 5 𝐶 = (ClSubSp‘𝑊)
31, 2cssi 20744 . . . 4 (𝑆𝐶𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
43adantl 482 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
5 eqid 2825 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
65, 1ocvss 20730 . . . . 5 ((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊)
7 eqid 2825 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
8 eqid 2825 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
9 eqid 2825 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
105, 7, 8, 9, 1ocvval 20727 . . . . 5 (((ocv‘𝑊)‘𝑆) ⊆ (Base‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
116, 10mp1i 13 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
12 riinrab 5002 . . . 4 ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
1311, 12syl6eqr 2878 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) = ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
14 cphnlm 23691 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
1514adantr 481 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑊 ∈ NrmMod)
16 nlmngp 23201 . . . . . . 7 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
17 ngptps 23126 . . . . . . 7 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
1815, 16, 173syl 18 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑊 ∈ TopSp)
19 csscld.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
205, 19istps 21458 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
2118, 20sylib 219 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝐽 ∈ (TopOn‘(Base‘𝑊)))
22 toponuni 21438 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝑊)) → (Base‘𝑊) = 𝐽)
2321, 22syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → (Base‘𝑊) = 𝐽)
2423ineq1d 4191 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ((Base‘𝑊) ∩ 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
254, 13, 243eqtrd 2864 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 = ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
26 topontop 21437 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝑊)) → 𝐽 ∈ Top)
2721, 26syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝐽 ∈ Top)
286sseli 3966 . . . . 5 (𝑦 ∈ ((ocv‘𝑊)‘𝑆) → 𝑦 ∈ (Base‘𝑊))
29 fvex 6679 . . . . . . 7 (0g‘(Scalar‘𝑊)) ∈ V
30 eqid 2825 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦))
3130mptiniseg 6090 . . . . . . 7 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3229, 31ax-mp 5 . . . . . 6 ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
33 eqid 2825 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 simpll 763 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ ℂPreHil)
3521adantr 481 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝐽 ∈ (TopOn‘(Base‘𝑊)))
3635cnmptid 22185 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
37 simpr 485 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
3835, 35, 37cnmptc 22186 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3919, 33, 7, 34, 35, 36, 38cnmpt1ip 23765 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4033cnfldhaus 23308 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
41 cphclm 23708 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
428clm0 23591 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
4341, 42syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
4443ad2antrr 722 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → 0 = (0g‘(Scalar‘𝑊)))
45 0cn 10625 . . . . . . . . 9 0 ∈ ℂ
4644, 45syl6eqelr 2926 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
47 unicntop 23309 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
4847sncld 21895 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
4940, 46, 48sylancr 587 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
50 cnclima 21792 . . . . . . 7 (((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5139, 49, 50syl2anc 584 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5232, 51eqeltrrid 2922 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ (Base‘𝑊)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
5328, 52sylan2 592 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) ∧ 𝑦 ∈ ((ocv‘𝑊)‘𝑆)) → {𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
5453ralrimiva 3186 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
55 eqid 2825 . . . 4 𝐽 = 𝐽
5655riincld 21568 . . 3 ((𝐽 ∈ Top ∧ ∀𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5727, 54, 56syl2anc 584 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → ( 𝐽 𝑦 ∈ ((ocv‘𝑊)‘𝑆){𝑥 ∈ (Base‘𝑊) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
5825, 57eqeltrd 2917 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝐶) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3142  {crab 3146  Vcvv 3499  cin 3938  wss 3939  {csn 4563   cuni 4836   ciin 4917  cmpt 5142  ccnv 5552  cima 5556  cfv 6351  (class class class)co 7151  cc 10527  0cc0 10529  Basecbs 16475  Scalarcsca 16560  ·𝑖cip 16562  TopOpenctopn 16687  0gc0g 16705  fldccnfld 20461  ocvcocv 20720  ClSubSpccss 20721  Topctop 21417  TopOnctopon 21434  TopSpctps 21456  Clsdccld 21540   Cn ccn 21748  Hauscha 21832  NrmGrpcngp 23102  NrmModcnlm 23105  ℂModcclm 23581  ℂPreHilccph 23685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-rnghom 19389  df-drng 19426  df-subrg 19455  df-staf 19538  df-srng 19539  df-lmod 19558  df-lmhm 19716  df-lvec 19797  df-sra 19866  df-rgmod 19867  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-cnfld 20462  df-phl 20686  df-ipf 20687  df-ocv 20723  df-css 20724  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-cn 21751  df-cnp 21752  df-t1 21838  df-haus 21839  df-tx 22086  df-hmeo 22279  df-xms 22845  df-ms 22846  df-tms 22847  df-nm 23107  df-ngp 23108  df-tng 23109  df-nlm 23111  df-clm 23582  df-cph 23687  df-tcph 23688
This theorem is referenced by:  cmscsscms  23891  cldcss  23959
  Copyright terms: Public domain W3C validator