| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsfn1c | Structured version Visualization version GIF version | ||
| Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsfn1c | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riinrab 5065 | . 2 ⊢ (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} | |
| 2 | mreacs 17675 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | |
| 3 | acsfn1 17678 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
| 5 | 4 | ralimdv 3155 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| 7 | mreriincl 17615 | . . 3 ⊢ (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) | |
| 8 | 2, 6, 7 | syl2an2r 685 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) |
| 9 | 1, 8 | eqeltrrid 2840 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 {crab 3420 ∩ cin 3930 𝒫 cpw 4580 ∩ ciin 4973 ‘cfv 6536 Moorecmre 17599 ACScacs 17602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-en 8965 df-fin 8968 df-mre 17603 df-mrc 17604 df-acs 17606 |
| This theorem is referenced by: nsgacs 19150 lssacs 20929 |
| Copyright terms: Public domain | W3C validator |