MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1c Structured version   Visualization version   GIF version

Theorem acsfn1c 17603
Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1c ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐾,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐   𝑋,𝑎,𝑏,𝑐   𝐸,𝑎
Allowed substitution hints:   𝐸(𝑏,𝑐)

Proof of Theorem acsfn1c
StepHypRef Expression
1 riinrab 5043 . 2 (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎}
2 mreacs 17599 . . 3 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
3 acsfn1 17602 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
43ex 412 . . . . 5 (𝑋𝑉 → (∀𝑐𝑋 𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)))
54ralimdv 3147 . . . 4 (𝑋𝑉 → (∀𝑏𝐾𝑐𝑋 𝐸𝑋 → ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)))
65imp 406 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
7 mreriincl 17535 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) ∈ (ACS‘𝑋))
82, 6, 7syl2an2r 685 . 2 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) ∈ (ACS‘𝑋))
91, 8eqeltrrid 2833 1 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  {crab 3402  cin 3910  𝒫 cpw 4559   ciin 4952  cfv 6499  Moorecmre 17519  ACScacs 17522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-fin 8899  df-mre 17523  df-mrc 17524  df-acs 17526
This theorem is referenced by:  nsgacs  19076  lssacs  20905
  Copyright terms: Public domain W3C validator