![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsfn1c | Structured version Visualization version GIF version |
Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
acsfn1c | β’ ((π β π β§ βπ β πΎ βπ β π πΈ β π) β {π β π« π β£ βπ β πΎ βπ β π πΈ β π} β (ACSβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riinrab 5077 | . 2 β’ (π« π β© β© π β πΎ {π β π« π β£ βπ β π πΈ β π}) = {π β π« π β£ βπ β πΎ βπ β π πΈ β π} | |
2 | mreacs 17598 | . . 3 β’ (π β π β (ACSβπ) β (Mooreβπ« π)) | |
3 | acsfn1 17601 | . . . . . 6 β’ ((π β π β§ βπ β π πΈ β π) β {π β π« π β£ βπ β π πΈ β π} β (ACSβπ)) | |
4 | 3 | ex 412 | . . . . 5 β’ (π β π β (βπ β π πΈ β π β {π β π« π β£ βπ β π πΈ β π} β (ACSβπ))) |
5 | 4 | ralimdv 3161 | . . . 4 β’ (π β π β (βπ β πΎ βπ β π πΈ β π β βπ β πΎ {π β π« π β£ βπ β π πΈ β π} β (ACSβπ))) |
6 | 5 | imp 406 | . . 3 β’ ((π β π β§ βπ β πΎ βπ β π πΈ β π) β βπ β πΎ {π β π« π β£ βπ β π πΈ β π} β (ACSβπ)) |
7 | mreriincl 17538 | . . 3 β’ (((ACSβπ) β (Mooreβπ« π) β§ βπ β πΎ {π β π« π β£ βπ β π πΈ β π} β (ACSβπ)) β (π« π β© β© π β πΎ {π β π« π β£ βπ β π πΈ β π}) β (ACSβπ)) | |
8 | 2, 6, 7 | syl2an2r 682 | . 2 β’ ((π β π β§ βπ β πΎ βπ β π πΈ β π) β (π« π β© β© π β πΎ {π β π« π β£ βπ β π πΈ β π}) β (ACSβπ)) |
9 | 1, 8 | eqeltrrid 2830 | 1 β’ ((π β π β§ βπ β πΎ βπ β π πΈ β π) β {π β π« π β£ βπ β πΎ βπ β π πΈ β π} β (ACSβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2098 βwral 3053 {crab 3424 β© cin 3939 π« cpw 4594 β© ciin 4988 βcfv 6533 Moorecmre 17522 ACScacs 17525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-om 7849 df-1o 8461 df-en 8935 df-fin 8938 df-mre 17526 df-mrc 17527 df-acs 17529 |
This theorem is referenced by: nsgacs 19074 lssacs 20799 |
Copyright terms: Public domain | W3C validator |