MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1c Structured version   Visualization version   GIF version

Theorem acsfn1c 17707
Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1c ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐾,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐   𝑋,𝑎,𝑏,𝑐   𝐸,𝑎
Allowed substitution hints:   𝐸(𝑏,𝑐)

Proof of Theorem acsfn1c
StepHypRef Expression
1 riinrab 5089 . 2 (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎}
2 mreacs 17703 . . 3 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
3 acsfn1 17706 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
43ex 412 . . . . 5 (𝑋𝑉 → (∀𝑐𝑋 𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)))
54ralimdv 3167 . . . 4 (𝑋𝑉 → (∀𝑏𝐾𝑐𝑋 𝐸𝑋 → ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)))
65imp 406 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
7 mreriincl 17643 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) ∈ (ACS‘𝑋))
82, 6, 7syl2an2r 685 . 2 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) ∈ (ACS‘𝑋))
91, 8eqeltrrid 2844 1 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wral 3059  {crab 3433  cin 3962  𝒫 cpw 4605   ciin 4997  cfv 6563  Moorecmre 17627  ACScacs 17630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988  df-mre 17631  df-mrc 17632  df-acs 17634
This theorem is referenced by:  nsgacs  19193  lssacs  20983
  Copyright terms: Public domain W3C validator