|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > acsfn1c | Structured version Visualization version GIF version | ||
| Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| acsfn1c | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | riinrab 5084 | . 2 ⊢ (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} | |
| 2 | mreacs 17701 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | |
| 3 | acsfn1 17704 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) | 
| 5 | 4 | ralimdv 3169 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) | 
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | 
| 7 | mreriincl 17641 | . . 3 ⊢ (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) | |
| 8 | 2, 6, 7 | syl2an2r 685 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) | 
| 9 | 1, 8 | eqeltrrid 2846 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∩ cin 3950 𝒫 cpw 4600 ∩ ciin 4992 ‘cfv 6561 Moorecmre 17625 ACScacs 17628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-fin 8989 df-mre 17629 df-mrc 17630 df-acs 17632 | 
| This theorem is referenced by: nsgacs 19180 lssacs 20965 | 
| Copyright terms: Public domain | W3C validator |