| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsfn1c | Structured version Visualization version GIF version | ||
| Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsfn1c | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riinrab 5043 | . 2 ⊢ (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} | |
| 2 | mreacs 17599 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | |
| 3 | acsfn1 17602 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
| 5 | 4 | ralimdv 3147 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| 7 | mreriincl 17535 | . . 3 ⊢ (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) | |
| 8 | 2, 6, 7 | syl2an2r 685 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) |
| 9 | 1, 8 | eqeltrrid 2833 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 {crab 3402 ∩ cin 3910 𝒫 cpw 4559 ∩ ciin 4952 ‘cfv 6499 Moorecmre 17519 ACScacs 17522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-en 8896 df-fin 8899 df-mre 17523 df-mrc 17524 df-acs 17526 |
| This theorem is referenced by: nsgacs 19076 lssacs 20905 |
| Copyright terms: Public domain | W3C validator |