![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsfn1c | Structured version Visualization version GIF version |
Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
acsfn1c | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riinrab 5089 | . 2 ⊢ (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} | |
2 | mreacs 17703 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | |
3 | acsfn1 17706 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | |
4 | 3 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
5 | 4 | ralimdv 3167 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
7 | mreriincl 17643 | . . 3 ⊢ (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) | |
8 | 2, 6, 7 | syl2an2r 685 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) |
9 | 1, 8 | eqeltrrid 2844 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∩ cin 3962 𝒫 cpw 4605 ∩ ciin 4997 ‘cfv 6563 Moorecmre 17627 ACScacs 17630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-fin 8988 df-mre 17631 df-mrc 17632 df-acs 17634 |
This theorem is referenced by: nsgacs 19193 lssacs 20983 |
Copyright terms: Public domain | W3C validator |