| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsfn1c | Structured version Visualization version GIF version | ||
| Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsfn1c | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riinrab 5051 | . 2 ⊢ (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} | |
| 2 | mreacs 17626 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | |
| 3 | acsfn1 17629 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
| 5 | 4 | ralimdv 3148 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋))) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| 7 | mreriincl 17566 | . . 3 ⊢ (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) | |
| 8 | 2, 6, 7 | syl2an2r 685 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎}) ∈ (ACS‘𝑋)) |
| 9 | 1, 8 | eqeltrrid 2834 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∩ cin 3916 𝒫 cpw 4566 ∩ ciin 4959 ‘cfv 6514 Moorecmre 17550 ACScacs 17553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 df-mre 17554 df-mrc 17555 df-acs 17557 |
| This theorem is referenced by: nsgacs 19101 lssacs 20880 |
| Copyright terms: Public domain | W3C validator |