![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdheq | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 4-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdhe.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdhe.g | ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
mapdh.ne2 | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
mapdheq | ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
4 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
5 | mapdhe.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
6 | 1, 2, 3, 4, 5 | mapdhval2 41425 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
7 | 6 | eqeq1d 2728 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) = 𝐺)) |
8 | mapdh.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | mapdh.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
10 | mapdh.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | mapdh.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
12 | mapdh.s | . . . 4 ⊢ − = (-g‘𝑈) | |
13 | mapdhc.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
14 | mapdh.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
15 | mapdh.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
16 | mapdh.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
17 | mapdh.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
18 | mapdh.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
19 | mapdh.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
20 | mapdh.ne2 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
21 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
22 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 3, 5, 4, 20, 21 | mapdpg 41405 | . . 3 ⊢ (𝜑 → ∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) |
23 | nfv 1910 | . . . 4 ⊢ Ⅎℎ𝜑 | |
24 | nfcvd 2893 | . . . 4 ⊢ (𝜑 → Ⅎℎ𝐺) | |
25 | nfvd 1911 | . . . 4 ⊢ (𝜑 → Ⅎℎ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) | |
26 | mapdhe.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐷) | |
27 | sneq 4643 | . . . . . . . 8 ⊢ (ℎ = 𝐺 → {ℎ} = {𝐺}) | |
28 | 27 | fveq2d 6905 | . . . . . . 7 ⊢ (ℎ = 𝐺 → (𝐽‘{ℎ}) = (𝐽‘{𝐺})) |
29 | 28 | eqeq2d 2737 | . . . . . 6 ⊢ (ℎ = 𝐺 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))) |
30 | oveq2 7432 | . . . . . . . . 9 ⊢ (ℎ = 𝐺 → (𝐹𝑅ℎ) = (𝐹𝑅𝐺)) | |
31 | 30 | sneqd 4645 | . . . . . . . 8 ⊢ (ℎ = 𝐺 → {(𝐹𝑅ℎ)} = {(𝐹𝑅𝐺)}) |
32 | 31 | fveq2d 6905 | . . . . . . 7 ⊢ (ℎ = 𝐺 → (𝐽‘{(𝐹𝑅ℎ)}) = (𝐽‘{(𝐹𝑅𝐺)})) |
33 | 32 | eqeq2d 2737 | . . . . . 6 ⊢ (ℎ = 𝐺 → ((𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}) ↔ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) |
34 | 29, 33 | anbi12d 630 | . . . . 5 ⊢ (ℎ = 𝐺 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
35 | 34 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐺) → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
36 | 23, 24, 25, 26, 35 | riota2df 7404 | . . 3 ⊢ ((𝜑 ∧ ∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) ↔ (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) = 𝐺)) |
37 | 22, 36 | mpdan 685 | . 2 ⊢ (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) ↔ (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) = 𝐺)) |
38 | 7, 37 | bitr4d 281 | 1 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃!wreu 3362 Vcvv 3462 ∖ cdif 3944 ifcif 4533 {csn 4633 〈cotp 4641 ↦ cmpt 5236 ‘cfv 6554 ℩crio 7379 (class class class)co 7424 1st c1st 8001 2nd c2nd 8002 Basecbs 17213 0gc0g 17454 -gcsg 18930 LSpanclspn 20948 HLchlt 39048 LHypclh 39683 DVecHcdvh 40777 LCDualclcd 41285 mapdcmpd 41323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-riotaBAD 38651 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-ot 4642 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-undef 8288 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-0g 17456 df-mre 17599 df-mrc 17600 df-acs 17602 df-proset 18320 df-poset 18338 df-plt 18355 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-p0 18450 df-p1 18451 df-lat 18457 df-clat 18524 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-cntz 19311 df-oppg 19340 df-lsm 19634 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-dvr 20383 df-nzr 20495 df-rlreg 20672 df-domn 20673 df-drng 20709 df-lmod 20838 df-lss 20909 df-lsp 20949 df-lvec 21081 df-lsatoms 38674 df-lshyp 38675 df-lcv 38717 df-lfl 38756 df-lkr 38784 df-ldual 38822 df-oposet 38874 df-ol 38876 df-oml 38877 df-covers 38964 df-ats 38965 df-atl 38996 df-cvlat 39020 df-hlat 39049 df-llines 39197 df-lplanes 39198 df-lvols 39199 df-lines 39200 df-psubsp 39202 df-pmap 39203 df-padd 39495 df-lhyp 39687 df-laut 39688 df-ldil 39803 df-ltrn 39804 df-trl 39858 df-tgrp 40442 df-tendo 40454 df-edring 40456 df-dveca 40702 df-disoa 40728 df-dvech 40778 df-dib 40838 df-dic 40872 df-dih 40928 df-doch 41047 df-djh 41094 df-lcdual 41286 df-mapd 41324 |
This theorem is referenced by: mapdheq2 41428 mapdheq4lem 41430 mapdheq4 41431 mapdh6lem1N 41432 mapdh6lem2N 41433 mapdh6aN 41434 mapdh7fN 41450 mapdh75fN 41454 mapdh8aa 41475 mapdh8d0N 41481 mapdh8d 41482 mapdh9a 41488 mapdh9aOLDN 41489 |
Copyright terms: Public domain | W3C validator |