Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq Structured version   Visualization version   GIF version

Theorem mapdheq 38896
Description: Lemmma for ~? mapdh . The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 4-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.g (𝜑𝐺𝐷)
mapdh.ne2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
mapdheq (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐺(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq
StepHypRef Expression
1 mapdh.q . . . 4 𝑄 = (0g𝐶)
2 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
4 mapdhc.f . . . 4 (𝜑𝐹𝐷)
5 mapdhe.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
61, 2, 3, 4, 5mapdhval2 38894 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))))
76eqeq1d 2823 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) = 𝐺))
8 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
9 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
10 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 mapdh.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdh.s . . . 4 = (-g𝑈)
13 mapdhc.o . . . 4 0 = (0g𝑈)
14 mapdh.n . . . 4 𝑁 = (LSpan‘𝑈)
15 mapdh.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
16 mapdh.d . . . 4 𝐷 = (Base‘𝐶)
17 mapdh.r . . . 4 𝑅 = (-g𝐶)
18 mapdh.j . . . 4 𝐽 = (LSpan‘𝐶)
19 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 mapdh.ne2 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
228, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 3, 5, 4, 20, 21mapdpg 38874 . . 3 (𝜑 → ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})))
23 nfv 1915 . . . 4 𝜑
24 nfcvd 2978 . . . 4 (𝜑𝐺)
25 nfvd 1916 . . . 4 (𝜑 → Ⅎ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
26 mapdhe.g . . . 4 (𝜑𝐺𝐷)
27 sneq 4563 . . . . . . . 8 ( = 𝐺 → {} = {𝐺})
2827fveq2d 6660 . . . . . . 7 ( = 𝐺 → (𝐽‘{}) = (𝐽‘{𝐺}))
2928eqeq2d 2832 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})))
30 oveq2 7150 . . . . . . . . 9 ( = 𝐺 → (𝐹𝑅) = (𝐹𝑅𝐺))
3130sneqd 4565 . . . . . . . 8 ( = 𝐺 → {(𝐹𝑅)} = {(𝐹𝑅𝐺)})
3231fveq2d 6660 . . . . . . 7 ( = 𝐺 → (𝐽‘{(𝐹𝑅)}) = (𝐽‘{(𝐹𝑅𝐺)}))
3332eqeq2d 2832 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3429, 33anbi12d 632 . . . . 5 ( = 𝐺 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3534adantl 484 . . . 4 ((𝜑 = 𝐺) → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3623, 24, 25, 26, 35riota2df 7123 . . 3 ((𝜑 ∧ ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) = 𝐺))
3722, 36mpdan 685 . 2 (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) = 𝐺))
387, 37bitr4d 284 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  ∃!wreu 3140  Vcvv 3486  cdif 3921  ifcif 4453  {csn 4553  cotp 4561  cmpt 5132  cfv 6341  crio 7099  (class class class)co 7142  1st c1st 7673  2nd c2nd 7674  Basecbs 16466  0gc0g 16696  -gcsg 18088  LSpanclspn 19726  HLchlt 36518  LHypclh 37152  DVecHcdvh 38246  LCDualclcd 38754  mapdcmpd 38792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-riotaBAD 36121
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-ot 4562  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-om 7567  df-1st 7675  df-2nd 7676  df-tpos 7878  df-undef 7925  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-sca 16564  df-vsca 16565  df-0g 16698  df-mre 16840  df-mrc 16841  df-acs 16843  df-proset 17521  df-poset 17539  df-plt 17551  df-lub 17567  df-glb 17568  df-join 17569  df-meet 17570  df-p0 17632  df-p1 17633  df-lat 17639  df-clat 17701  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-submnd 17940  df-grp 18089  df-minusg 18090  df-sbg 18091  df-subg 18259  df-cntz 18430  df-oppg 18457  df-lsm 18744  df-cmn 18891  df-abl 18892  df-mgp 19223  df-ur 19235  df-ring 19282  df-oppr 19356  df-dvdsr 19374  df-unit 19375  df-invr 19405  df-dvr 19416  df-drng 19487  df-lmod 19619  df-lss 19687  df-lsp 19727  df-lvec 19858  df-lsatoms 36144  df-lshyp 36145  df-lcv 36187  df-lfl 36226  df-lkr 36254  df-ldual 36292  df-oposet 36344  df-ol 36346  df-oml 36347  df-covers 36434  df-ats 36435  df-atl 36466  df-cvlat 36490  df-hlat 36519  df-llines 36666  df-lplanes 36667  df-lvols 36668  df-lines 36669  df-psubsp 36671  df-pmap 36672  df-padd 36964  df-lhyp 37156  df-laut 37157  df-ldil 37272  df-ltrn 37273  df-trl 37327  df-tgrp 37911  df-tendo 37923  df-edring 37925  df-dveca 38171  df-disoa 38197  df-dvech 38247  df-dib 38307  df-dic 38341  df-dih 38397  df-doch 38516  df-djh 38563  df-lcdual 38755  df-mapd 38793
This theorem is referenced by:  mapdheq2  38897  mapdheq4lem  38899  mapdheq4  38900  mapdh6lem1N  38901  mapdh6lem2N  38902  mapdh6aN  38903  mapdh7fN  38919  mapdh75fN  38923  mapdh8aa  38944  mapdh8d0N  38950  mapdh8d  38951  mapdh9a  38957  mapdh9aOLDN  38958
  Copyright terms: Public domain W3C validator