Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eq Structured version   Visualization version   GIF version

Theorem hdmap1eq 37964
Description: The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h 𝐻 = (LHyp‘𝐾)
hdmap1val2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1val2.v 𝑉 = (Base‘𝑈)
hdmap1val2.s = (-g𝑈)
hdmap1val2.o 0 = (0g𝑈)
hdmap1val2.n 𝑁 = (LSpan‘𝑈)
hdmap1val2.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1val2.d 𝐷 = (Base‘𝐶)
hdmap1val2.r 𝑅 = (-g𝐶)
hdmap1val2.l 𝐿 = (LSpan‘𝐶)
hdmap1val2.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1val2.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1val2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eq.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eq.f (𝜑𝐹𝐷)
hdmap1eq.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1eq.g (𝜑𝐺𝐷)
hdmap1eq.e (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
hdmap1eq.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
Assertion
Ref Expression
hdmap1eq (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))

Proof of Theorem hdmap1eq
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hdmap1val2.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1val2.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1val2.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1val2.s . . . 4 = (-g𝑈)
5 hdmap1val2.o . . . 4 0 = (0g𝑈)
6 hdmap1val2.n . . . 4 𝑁 = (LSpan‘𝑈)
7 hdmap1val2.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1val2.d . . . 4 𝐷 = (Base‘𝐶)
9 hdmap1val2.r . . . 4 𝑅 = (-g𝐶)
10 hdmap1val2.l . . . 4 𝐿 = (LSpan‘𝐶)
11 hdmap1val2.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
12 hdmap1val2.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
13 hdmap1val2.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 hdmap1eq.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3804 . . . 4 (𝜑𝑋𝑉)
16 hdmap1eq.f . . . 4 (𝜑𝐹𝐷)
17 hdmap1eq.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17hdmap1val2 37963 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
1918eqeq1d 2780 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) = 𝐺))
20 hdmap1eq.e . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21 hdmap1eq.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
221, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 16, 20, 21mapdpg 37869 . . 3 (𝜑 → ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))
23 nfv 1957 . . . 4 𝜑
24 nfcvd 2935 . . . 4 (𝜑𝐺)
25 nfvd 1958 . . . 4 (𝜑 → Ⅎ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
26 hdmap1eq.g . . . 4 (𝜑𝐺𝐷)
27 sneq 4408 . . . . . . . 8 ( = 𝐺 → {} = {𝐺})
2827fveq2d 6452 . . . . . . 7 ( = 𝐺 → (𝐿‘{}) = (𝐿‘{𝐺}))
2928eqeq2d 2788 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺})))
30 oveq2 6932 . . . . . . . . 9 ( = 𝐺 → (𝐹𝑅) = (𝐹𝑅𝐺))
3130sneqd 4410 . . . . . . . 8 ( = 𝐺 → {(𝐹𝑅)} = {(𝐹𝑅𝐺)})
3231fveq2d 6452 . . . . . . 7 ( = 𝐺 → (𝐿‘{(𝐹𝑅)}) = (𝐿‘{(𝐹𝑅𝐺)}))
3332eqeq2d 2788 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
3429, 33anbi12d 624 . . . . 5 ( = 𝐺 → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
3534adantl 475 . . . 4 ((𝜑 = 𝐺) → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
3623, 24, 25, 26, 35riota2df 6905 . . 3 ((𝜑 ∧ ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) = 𝐺))
3722, 36mpdan 677 . 2 (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) = 𝐺))
3819, 37bitr4d 274 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  ∃!wreu 3092  cdif 3789  {csn 4398  cotp 4406  cfv 6137  crio 6884  (class class class)co 6924  Basecbs 16266  0gc0g 16497  -gcsg 17822  LSpanclspn 19377  HLchlt 35513  LHypclh 36147  DVecHcdvh 37241  LCDualclcd 37749  mapdcmpd 37787  HDMap1chdma1 37954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-riotaBAD 35116
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-tpos 7636  df-undef 7683  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-sca 16365  df-vsca 16366  df-0g 16499  df-mre 16643  df-mrc 16644  df-acs 16646  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-p1 17437  df-lat 17443  df-clat 17505  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-grp 17823  df-minusg 17824  df-sbg 17825  df-subg 17986  df-cntz 18144  df-oppg 18170  df-lsm 18446  df-cmn 18592  df-abl 18593  df-mgp 18888  df-ur 18900  df-ring 18947  df-oppr 19021  df-dvdsr 19039  df-unit 19040  df-invr 19070  df-dvr 19081  df-drng 19152  df-lmod 19268  df-lss 19336  df-lsp 19378  df-lvec 19509  df-lsatoms 35139  df-lshyp 35140  df-lcv 35182  df-lfl 35221  df-lkr 35249  df-ldual 35287  df-oposet 35339  df-ol 35341  df-oml 35342  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485  df-hlat 35514  df-llines 35661  df-lplanes 35662  df-lvols 35663  df-lines 35664  df-psubsp 35666  df-pmap 35667  df-padd 35959  df-lhyp 36151  df-laut 36152  df-ldil 36267  df-ltrn 36268  df-trl 36322  df-tgrp 36906  df-tendo 36918  df-edring 36920  df-dveca 37166  df-disoa 37192  df-dvech 37242  df-dib 37302  df-dic 37336  df-dih 37392  df-doch 37511  df-djh 37558  df-lcdual 37750  df-mapd 37788  df-hdmap1 37956
This theorem is referenced by:  hdmap1l6lem1  37970  hdmap1l6lem2  37971  hdmap1l6a  37972  hdmapval3lemN  38000  hdmap10lem  38002  hdmap11lem1  38004
  Copyright terms: Public domain W3C validator