Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eq Structured version   Visualization version   GIF version

Theorem hdmap1eq 41846
Description: The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h 𝐻 = (LHyp‘𝐾)
hdmap1val2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1val2.v 𝑉 = (Base‘𝑈)
hdmap1val2.s = (-g𝑈)
hdmap1val2.o 0 = (0g𝑈)
hdmap1val2.n 𝑁 = (LSpan‘𝑈)
hdmap1val2.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1val2.d 𝐷 = (Base‘𝐶)
hdmap1val2.r 𝑅 = (-g𝐶)
hdmap1val2.l 𝐿 = (LSpan‘𝐶)
hdmap1val2.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1val2.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1val2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eq.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eq.f (𝜑𝐹𝐷)
hdmap1eq.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1eq.g (𝜑𝐺𝐷)
hdmap1eq.e (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
hdmap1eq.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
Assertion
Ref Expression
hdmap1eq (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))

Proof of Theorem hdmap1eq
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hdmap1val2.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1val2.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1val2.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1val2.s . . . 4 = (-g𝑈)
5 hdmap1val2.o . . . 4 0 = (0g𝑈)
6 hdmap1val2.n . . . 4 𝑁 = (LSpan‘𝑈)
7 hdmap1val2.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1val2.d . . . 4 𝐷 = (Base‘𝐶)
9 hdmap1val2.r . . . 4 𝑅 = (-g𝐶)
10 hdmap1val2.l . . . 4 𝐿 = (LSpan‘𝐶)
11 hdmap1val2.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
12 hdmap1val2.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
13 hdmap1val2.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 hdmap1eq.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3914 . . . 4 (𝜑𝑋𝑉)
16 hdmap1eq.f . . . 4 (𝜑𝐹𝐷)
17 hdmap1eq.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17hdmap1val2 41845 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
1918eqeq1d 2733 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) = 𝐺))
20 hdmap1eq.e . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21 hdmap1eq.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
221, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 16, 20, 21mapdpg 41751 . . 3 (𝜑 → ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))
23 nfv 1915 . . . 4 𝜑
24 nfcvd 2895 . . . 4 (𝜑𝐺)
25 nfvd 1916 . . . 4 (𝜑 → Ⅎ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
26 hdmap1eq.g . . . 4 (𝜑𝐺𝐷)
27 sneq 4586 . . . . . . . 8 ( = 𝐺 → {} = {𝐺})
2827fveq2d 6826 . . . . . . 7 ( = 𝐺 → (𝐿‘{}) = (𝐿‘{𝐺}))
2928eqeq2d 2742 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺})))
30 oveq2 7354 . . . . . . . . 9 ( = 𝐺 → (𝐹𝑅) = (𝐹𝑅𝐺))
3130sneqd 4588 . . . . . . . 8 ( = 𝐺 → {(𝐹𝑅)} = {(𝐹𝑅𝐺)})
3231fveq2d 6826 . . . . . . 7 ( = 𝐺 → (𝐿‘{(𝐹𝑅)}) = (𝐿‘{(𝐹𝑅𝐺)}))
3332eqeq2d 2742 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
3429, 33anbi12d 632 . . . . 5 ( = 𝐺 → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
3534adantl 481 . . . 4 ((𝜑 = 𝐺) → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
3623, 24, 25, 26, 35riota2df 7326 . . 3 ((𝜑 ∧ ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) = 𝐺))
3722, 36mpdan 687 . 2 (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))) = 𝐺))
3819, 37bitr4d 282 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  ∃!wreu 3344  cdif 3899  {csn 4576  cotp 4584  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  0gc0g 17343  -gcsg 18848  LSpanclspn 20905  HLchlt 39395  LHypclh 40029  DVecHcdvh 41123  LCDualclcd 41631  mapdcmpd 41669  HDMap1chdma1 41836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440  df-lcdual 41632  df-mapd 41670  df-hdmap1 41838
This theorem is referenced by:  hdmap1l6lem1  41852  hdmap1l6lem2  41853  hdmap1l6a  41854  hdmapval3lemN  41882  hdmap10lem  41884  hdmap11lem1  41886
  Copyright terms: Public domain W3C validator