Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpo Structured version   Visualization version   GIF version

Theorem rnmpo 7284
 Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
rnmpo ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rnmpo
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 7160 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2781 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
43rneqi 5782 . 2 ran 𝐹 = ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
5 rnoprab2 7257 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
64, 5eqtri 2781 1 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2735  ∃wrex 3071  ran crn 5528  {coprab 7156   ∈ cmpo 7157 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5036  df-opab 5098  df-cnv 5535  df-dm 5537  df-rn 5538  df-oprab 7159  df-mpo 7160 This theorem is referenced by:  elrnmpog  7286  elrnmpo  7287  ralrnmpo  7289  mpoexw  7786  dffi3  8933  ixpiunwdom  9092  qnnen  15619  txuni2  22270  txbas  22272  xkobval  22291  xkoopn  22294  txrest  22336  ptrescn  22344  tx1stc  22355  xkoptsub  22359  xkopt  22360  xkococn  22365  ptcmplem4  22760  met2ndci  23229  i1fadd  24400  i1fmul  24401  rnmposs  30539  cnre2csqima  31386  qqhval2  31455  scutf  33593  icoreresf  35075  ptrest  35362  eldiophb  40099
 Copyright terms: Public domain W3C validator