MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpo Structured version   Visualization version   GIF version

Theorem rnmpo 7385
Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
rnmpo ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rnmpo
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 7260 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2766 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
43rneqi 5835 . 2 ran 𝐹 = ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
5 rnoprab2 7357 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
64, 5eqtri 2766 1 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  ran crn 5581  {coprab 7256  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  elrnmpog  7387  elrnmpo  7388  ralrnmpo  7390  mpoexw  7892  dffi3  9120  ixpiunwdom  9279  qnnen  15850  txuni2  22624  txbas  22626  xkobval  22645  xkoopn  22648  txrest  22690  ptrescn  22698  tx1stc  22709  xkoptsub  22713  xkopt  22714  xkococn  22719  ptcmplem4  23114  met2ndci  23584  i1fadd  24764  i1fmul  24765  rnmposs  30913  cnre2csqima  31763  qqhval2  31832  scutf  33933  icoreresf  35450  ptrest  35703  eldiophb  40495
  Copyright terms: Public domain W3C validator