MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpo Structured version   Visualization version   GIF version

Theorem rnmpo 7566
Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
rnmpo ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rnmpo
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 7436 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2765 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
43rneqi 5948 . 2 ran 𝐹 = ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
5 rnoprab2 7539 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
64, 5eqtri 2765 1 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  ran crn 5686  {coprab 7432  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  elrnmpog  7568  elrnmpo  7569  ralrnmpo  7572  mpoexw  8103  dffi3  9471  ixpiunwdom  9630  qnnen  16249  txuni2  23573  txbas  23575  xkobval  23594  xkoopn  23597  txrest  23639  ptrescn  23647  tx1stc  23658  xkoptsub  23662  xkopt  23663  xkococn  23668  ptcmplem4  24063  met2ndci  24535  i1fadd  25730  i1fmul  25731  scutf  27857  mulsproplem9  28150  ssltmul1  28173  ssltmul2  28174  precsexlem11  28241  rnmposs  32684  cnre2csqima  33910  qqhval2  33983  icoreresf  37353  ptrest  37626  eldiophb  42768
  Copyright terms: Public domain W3C validator