Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmpo | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
rnmpo | ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpo 7280 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2766 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
4 | 3 | rneqi 5846 | . 2 ⊢ ran 𝐹 = ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | rnoprab2 7379 | . 2 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} | |
6 | 4, 5 | eqtri 2766 | 1 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ran crn 5590 {coprab 7276 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: elrnmpog 7409 elrnmpo 7410 ralrnmpo 7412 mpoexw 7919 dffi3 9190 ixpiunwdom 9349 qnnen 15922 txuni2 22716 txbas 22718 xkobval 22737 xkoopn 22740 txrest 22782 ptrescn 22790 tx1stc 22801 xkoptsub 22805 xkopt 22806 xkococn 22811 ptcmplem4 23206 met2ndci 23678 i1fadd 24859 i1fmul 24860 rnmposs 31011 cnre2csqima 31861 qqhval2 31932 scutf 34006 icoreresf 35523 ptrest 35776 eldiophb 40579 |
Copyright terms: Public domain | W3C validator |