Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nn0ind Structured version   Visualization version   GIF version

Theorem 2nn0ind 40683
Description: Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
2nn0ind.1 𝜓
2nn0ind.2 𝜒
2nn0ind.3 (𝑦 ∈ ℕ → ((𝜃𝜏) → 𝜂))
2nn0ind.4 (𝑥 = 0 → (𝜑𝜓))
2nn0ind.5 (𝑥 = 1 → (𝜑𝜒))
2nn0ind.6 (𝑥 = (𝑦 − 1) → (𝜑𝜃))
2nn0ind.7 (𝑥 = 𝑦 → (𝜑𝜏))
2nn0ind.8 (𝑥 = (𝑦 + 1) → (𝜑𝜂))
2nn0ind.9 (𝑥 = 𝐴 → (𝜑𝜌))
Assertion
Ref Expression
2nn0ind (𝐴 ∈ ℕ0𝜌)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥   𝜌,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝜌(𝑦)   𝐴(𝑦)

Proof of Theorem 2nn0ind
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 12202 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ)
2 oveq1 7262 . . . . . . 7 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
32sbceq1d 3716 . . . . . 6 (𝑎 = 1 → ([(𝑎 − 1) / 𝑥]𝜑[(1 − 1) / 𝑥]𝜑))
4 dfsbcq 3713 . . . . . 6 (𝑎 = 1 → ([𝑎 / 𝑥]𝜑[1 / 𝑥]𝜑))
53, 4anbi12d 630 . . . . 5 (𝑎 = 1 → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([(1 − 1) / 𝑥]𝜑[1 / 𝑥]𝜑)))
6 oveq1 7262 . . . . . . 7 (𝑎 = 𝑦 → (𝑎 − 1) = (𝑦 − 1))
76sbceq1d 3716 . . . . . 6 (𝑎 = 𝑦 → ([(𝑎 − 1) / 𝑥]𝜑[(𝑦 − 1) / 𝑥]𝜑))
8 dfsbcq 3713 . . . . . 6 (𝑎 = 𝑦 → ([𝑎 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
97, 8anbi12d 630 . . . . 5 (𝑎 = 𝑦 → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)))
10 oveq1 7262 . . . . . . 7 (𝑎 = (𝑦 + 1) → (𝑎 − 1) = ((𝑦 + 1) − 1))
1110sbceq1d 3716 . . . . . 6 (𝑎 = (𝑦 + 1) → ([(𝑎 − 1) / 𝑥]𝜑[((𝑦 + 1) − 1) / 𝑥]𝜑))
12 dfsbcq 3713 . . . . . 6 (𝑎 = (𝑦 + 1) → ([𝑎 / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑))
1311, 12anbi12d 630 . . . . 5 (𝑎 = (𝑦 + 1) → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑)))
14 oveq1 7262 . . . . . . 7 (𝑎 = (𝐴 + 1) → (𝑎 − 1) = ((𝐴 + 1) − 1))
1514sbceq1d 3716 . . . . . 6 (𝑎 = (𝐴 + 1) → ([(𝑎 − 1) / 𝑥]𝜑[((𝐴 + 1) − 1) / 𝑥]𝜑))
16 dfsbcq 3713 . . . . . 6 (𝑎 = (𝐴 + 1) → ([𝑎 / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
1715, 16anbi12d 630 . . . . 5 (𝑎 = (𝐴 + 1) → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑)))
18 2nn0ind.1 . . . . . . 7 𝜓
19 ovex 7288 . . . . . . . 8 (1 − 1) ∈ V
20 1m1e0 11975 . . . . . . . . . 10 (1 − 1) = 0
2120eqeq2i 2751 . . . . . . . . 9 (𝑥 = (1 − 1) ↔ 𝑥 = 0)
22 2nn0ind.4 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
2321, 22sylbi 216 . . . . . . . 8 (𝑥 = (1 − 1) → (𝜑𝜓))
2419, 23sbcie 3754 . . . . . . 7 ([(1 − 1) / 𝑥]𝜑𝜓)
2518, 24mpbir 230 . . . . . 6 [(1 − 1) / 𝑥]𝜑
26 2nn0ind.2 . . . . . . 7 𝜒
27 1ex 10902 . . . . . . . 8 1 ∈ V
28 2nn0ind.5 . . . . . . . 8 (𝑥 = 1 → (𝜑𝜒))
2927, 28sbcie 3754 . . . . . . 7 ([1 / 𝑥]𝜑𝜒)
3026, 29mpbir 230 . . . . . 6 [1 / 𝑥]𝜑
3125, 30pm3.2i 470 . . . . 5 ([(1 − 1) / 𝑥]𝜑[1 / 𝑥]𝜑)
32 simprr 769 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [𝑦 / 𝑥]𝜑)
33 nncn 11911 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
34 ax-1cn 10860 . . . . . . . . . . 11 1 ∈ ℂ
35 pncan 11157 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3633, 34, 35sylancl 585 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
3736adantr 480 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ((𝑦 + 1) − 1) = 𝑦)
3837sbceq1d 3716 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
3932, 38mpbird 256 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [((𝑦 + 1) − 1) / 𝑥]𝜑)
40 2nn0ind.3 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝜃𝜏) → 𝜂))
41 ovex 7288 . . . . . . . . . . 11 (𝑦 − 1) ∈ V
42 2nn0ind.6 . . . . . . . . . . 11 (𝑥 = (𝑦 − 1) → (𝜑𝜃))
4341, 42sbcie 3754 . . . . . . . . . 10 ([(𝑦 − 1) / 𝑥]𝜑𝜃)
44 vex 3426 . . . . . . . . . . 11 𝑦 ∈ V
45 2nn0ind.7 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜏))
4644, 45sbcie 3754 . . . . . . . . . 10 ([𝑦 / 𝑥]𝜑𝜏)
4743, 46anbi12i 626 . . . . . . . . 9 (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) ↔ (𝜃𝜏))
48 ovex 7288 . . . . . . . . . 10 (𝑦 + 1) ∈ V
49 2nn0ind.8 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜂))
5048, 49sbcie 3754 . . . . . . . . 9 ([(𝑦 + 1) / 𝑥]𝜑𝜂)
5140, 47, 503imtr4g 295 . . . . . . . 8 (𝑦 ∈ ℕ → (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) → [(𝑦 + 1) / 𝑥]𝜑))
5251imp 406 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [(𝑦 + 1) / 𝑥]𝜑)
5339, 52jca 511 . . . . . 6 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑))
5453ex 412 . . . . 5 (𝑦 ∈ ℕ → (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑)))
555, 9, 13, 17, 31, 54nnind 11921 . . . 4 ((𝐴 + 1) ∈ ℕ → ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
561, 55syl 17 . . 3 (𝐴 ∈ ℕ0 → ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
57 nn0cn 12173 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
58 pncan 11157 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5957, 34, 58sylancl 585 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝐴 + 1) − 1) = 𝐴)
6059sbceq1d 3716 . . . . 5 (𝐴 ∈ ℕ0 → ([((𝐴 + 1) − 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6160biimpa 476 . . . 4 ((𝐴 ∈ ℕ0[((𝐴 + 1) − 1) / 𝑥]𝜑) → [𝐴 / 𝑥]𝜑)
6261adantrr 713 . . 3 ((𝐴 ∈ ℕ0 ∧ ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑)) → [𝐴 / 𝑥]𝜑)
6356, 62mpdan 683 . 2 (𝐴 ∈ ℕ0[𝐴 / 𝑥]𝜑)
64 2nn0ind.9 . . 3 (𝑥 = 𝐴 → (𝜑𝜌))
6564sbcieg 3751 . 2 (𝐴 ∈ ℕ0 → ([𝐴 / 𝑥]𝜑𝜌))
6663, 65mpbid 231 1 (𝐴 ∈ ℕ0𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  [wsbc 3711  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-nn 11904  df-n0 12164
This theorem is referenced by:  jm2.18  40726  jm2.15nn0  40741  jm2.16nn0  40742
  Copyright terms: Public domain W3C validator