Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nn0ind Structured version   Visualization version   GIF version

Theorem 2nn0ind 41255
Description: Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
2nn0ind.1 𝜓
2nn0ind.2 𝜒
2nn0ind.3 (𝑦 ∈ ℕ → ((𝜃𝜏) → 𝜂))
2nn0ind.4 (𝑥 = 0 → (𝜑𝜓))
2nn0ind.5 (𝑥 = 1 → (𝜑𝜒))
2nn0ind.6 (𝑥 = (𝑦 − 1) → (𝜑𝜃))
2nn0ind.7 (𝑥 = 𝑦 → (𝜑𝜏))
2nn0ind.8 (𝑥 = (𝑦 + 1) → (𝜑𝜂))
2nn0ind.9 (𝑥 = 𝐴 → (𝜑𝜌))
Assertion
Ref Expression
2nn0ind (𝐴 ∈ ℕ0𝜌)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥   𝜌,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝜌(𝑦)   𝐴(𝑦)

Proof of Theorem 2nn0ind
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 12452 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ)
2 oveq1 7364 . . . . . . 7 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
32sbceq1d 3744 . . . . . 6 (𝑎 = 1 → ([(𝑎 − 1) / 𝑥]𝜑[(1 − 1) / 𝑥]𝜑))
4 dfsbcq 3741 . . . . . 6 (𝑎 = 1 → ([𝑎 / 𝑥]𝜑[1 / 𝑥]𝜑))
53, 4anbi12d 631 . . . . 5 (𝑎 = 1 → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([(1 − 1) / 𝑥]𝜑[1 / 𝑥]𝜑)))
6 oveq1 7364 . . . . . . 7 (𝑎 = 𝑦 → (𝑎 − 1) = (𝑦 − 1))
76sbceq1d 3744 . . . . . 6 (𝑎 = 𝑦 → ([(𝑎 − 1) / 𝑥]𝜑[(𝑦 − 1) / 𝑥]𝜑))
8 dfsbcq 3741 . . . . . 6 (𝑎 = 𝑦 → ([𝑎 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
97, 8anbi12d 631 . . . . 5 (𝑎 = 𝑦 → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)))
10 oveq1 7364 . . . . . . 7 (𝑎 = (𝑦 + 1) → (𝑎 − 1) = ((𝑦 + 1) − 1))
1110sbceq1d 3744 . . . . . 6 (𝑎 = (𝑦 + 1) → ([(𝑎 − 1) / 𝑥]𝜑[((𝑦 + 1) − 1) / 𝑥]𝜑))
12 dfsbcq 3741 . . . . . 6 (𝑎 = (𝑦 + 1) → ([𝑎 / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑))
1311, 12anbi12d 631 . . . . 5 (𝑎 = (𝑦 + 1) → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑)))
14 oveq1 7364 . . . . . . 7 (𝑎 = (𝐴 + 1) → (𝑎 − 1) = ((𝐴 + 1) − 1))
1514sbceq1d 3744 . . . . . 6 (𝑎 = (𝐴 + 1) → ([(𝑎 − 1) / 𝑥]𝜑[((𝐴 + 1) − 1) / 𝑥]𝜑))
16 dfsbcq 3741 . . . . . 6 (𝑎 = (𝐴 + 1) → ([𝑎 / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
1715, 16anbi12d 631 . . . . 5 (𝑎 = (𝐴 + 1) → (([(𝑎 − 1) / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑)))
18 2nn0ind.1 . . . . . . 7 𝜓
19 ovex 7390 . . . . . . . 8 (1 − 1) ∈ V
20 1m1e0 12225 . . . . . . . . . 10 (1 − 1) = 0
2120eqeq2i 2749 . . . . . . . . 9 (𝑥 = (1 − 1) ↔ 𝑥 = 0)
22 2nn0ind.4 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
2321, 22sylbi 216 . . . . . . . 8 (𝑥 = (1 − 1) → (𝜑𝜓))
2419, 23sbcie 3782 . . . . . . 7 ([(1 − 1) / 𝑥]𝜑𝜓)
2518, 24mpbir 230 . . . . . 6 [(1 − 1) / 𝑥]𝜑
26 2nn0ind.2 . . . . . . 7 𝜒
27 1ex 11151 . . . . . . . 8 1 ∈ V
28 2nn0ind.5 . . . . . . . 8 (𝑥 = 1 → (𝜑𝜒))
2927, 28sbcie 3782 . . . . . . 7 ([1 / 𝑥]𝜑𝜒)
3026, 29mpbir 230 . . . . . 6 [1 / 𝑥]𝜑
3125, 30pm3.2i 471 . . . . 5 ([(1 − 1) / 𝑥]𝜑[1 / 𝑥]𝜑)
32 simprr 771 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [𝑦 / 𝑥]𝜑)
33 nncn 12161 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
34 ax-1cn 11109 . . . . . . . . . . 11 1 ∈ ℂ
35 pncan 11407 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3633, 34, 35sylancl 586 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
3736adantr 481 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ((𝑦 + 1) − 1) = 𝑦)
3837sbceq1d 3744 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
3932, 38mpbird 256 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [((𝑦 + 1) − 1) / 𝑥]𝜑)
40 2nn0ind.3 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝜃𝜏) → 𝜂))
41 ovex 7390 . . . . . . . . . . 11 (𝑦 − 1) ∈ V
42 2nn0ind.6 . . . . . . . . . . 11 (𝑥 = (𝑦 − 1) → (𝜑𝜃))
4341, 42sbcie 3782 . . . . . . . . . 10 ([(𝑦 − 1) / 𝑥]𝜑𝜃)
44 vex 3449 . . . . . . . . . . 11 𝑦 ∈ V
45 2nn0ind.7 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜏))
4644, 45sbcie 3782 . . . . . . . . . 10 ([𝑦 / 𝑥]𝜑𝜏)
4743, 46anbi12i 627 . . . . . . . . 9 (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) ↔ (𝜃𝜏))
48 ovex 7390 . . . . . . . . . 10 (𝑦 + 1) ∈ V
49 2nn0ind.8 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜂))
5048, 49sbcie 3782 . . . . . . . . 9 ([(𝑦 + 1) / 𝑥]𝜑𝜂)
5140, 47, 503imtr4g 295 . . . . . . . 8 (𝑦 ∈ ℕ → (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) → [(𝑦 + 1) / 𝑥]𝜑))
5251imp 407 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → [(𝑦 + 1) / 𝑥]𝜑)
5339, 52jca 512 . . . . . 6 ((𝑦 ∈ ℕ ∧ ([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑)) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑))
5453ex 413 . . . . 5 (𝑦 ∈ ℕ → (([(𝑦 − 1) / 𝑥]𝜑[𝑦 / 𝑥]𝜑) → ([((𝑦 + 1) − 1) / 𝑥]𝜑[(𝑦 + 1) / 𝑥]𝜑)))
555, 9, 13, 17, 31, 54nnind 12171 . . . 4 ((𝐴 + 1) ∈ ℕ → ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
561, 55syl 17 . . 3 (𝐴 ∈ ℕ0 → ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑))
57 nn0cn 12423 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
58 pncan 11407 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5957, 34, 58sylancl 586 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝐴 + 1) − 1) = 𝐴)
6059sbceq1d 3744 . . . . 5 (𝐴 ∈ ℕ0 → ([((𝐴 + 1) − 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6160biimpa 477 . . . 4 ((𝐴 ∈ ℕ0[((𝐴 + 1) − 1) / 𝑥]𝜑) → [𝐴 / 𝑥]𝜑)
6261adantrr 715 . . 3 ((𝐴 ∈ ℕ0 ∧ ([((𝐴 + 1) − 1) / 𝑥]𝜑[(𝐴 + 1) / 𝑥]𝜑)) → [𝐴 / 𝑥]𝜑)
6356, 62mpdan 685 . 2 (𝐴 ∈ ℕ0[𝐴 / 𝑥]𝜑)
64 2nn0ind.9 . . 3 (𝑥 = 𝐴 → (𝜑𝜌))
6564sbcieg 3779 . 2 (𝐴 ∈ ℕ0 → ([𝐴 / 𝑥]𝜑𝜌))
6663, 65mpbid 231 1 (𝐴 ∈ ℕ0𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  [wsbc 3739  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  cn 12153  0cn0 12413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-sub 11387  df-nn 12154  df-n0 12414
This theorem is referenced by:  jm2.18  41298  jm2.15nn0  41313  jm2.16nn0  41314
  Copyright terms: Public domain W3C validator