MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinfil Structured version   Visualization version   GIF version

Theorem cfinfil 23922
Description: Relative complements of the finite parts of an infinite set is a filter. When 𝐴 = ℕ the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinfil ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cfinfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4143 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
21eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
32elrab 3708 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦) ∈ Fin))
4 velpw 4627 . . . . 5 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
54anbi1i 623 . . . 4 ((𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦) ∈ Fin) ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin))
63, 5bitri 275 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin))
76a1i 11 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin)))
8 simp1 1136 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → 𝑋𝑉)
9 ssdif0 4389 . . . . 5 (𝐴𝑋 ↔ (𝐴𝑋) = ∅)
10 0fi 9108 . . . . . 6 ∅ ∈ Fin
11 eleq1 2832 . . . . . 6 ((𝐴𝑋) = ∅ → ((𝐴𝑋) ∈ Fin ↔ ∅ ∈ Fin))
1210, 11mpbiri 258 . . . . 5 ((𝐴𝑋) = ∅ → (𝐴𝑋) ∈ Fin)
139, 12sylbi 217 . . . 4 (𝐴𝑋 → (𝐴𝑋) ∈ Fin)
14 difeq2 4143 . . . . . . 7 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
1514eleq1d 2829 . . . . . 6 (𝑦 = 𝑋 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑋) ∈ Fin))
1615sbcieg 3845 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑋) ∈ Fin))
1716biimpar 477 . . . 4 ((𝑋𝑉 ∧ (𝐴𝑋) ∈ Fin) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
1813, 17sylan2 592 . . 3 ((𝑋𝑉𝐴𝑋) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
19183adant3 1132 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
20 0ex 5325 . . . . . 6 ∅ ∈ V
21 difeq2 4143 . . . . . . 7 (𝑦 = ∅ → (𝐴𝑦) = (𝐴 ∖ ∅))
2221eleq1d 2829 . . . . . 6 (𝑦 = ∅ → ((𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈ Fin))
2320, 22sbcie 3848 . . . . 5 ([∅ / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈ Fin)
24 dif0 4400 . . . . . 6 (𝐴 ∖ ∅) = 𝐴
2524eleq1i 2835 . . . . 5 ((𝐴 ∖ ∅) ∈ Fin ↔ 𝐴 ∈ Fin)
2623, 25sylbb 219 . . . 4 ([∅ / 𝑦](𝐴𝑦) ∈ Fin → 𝐴 ∈ Fin)
2726con3i 154 . . 3 𝐴 ∈ Fin → ¬ [∅ / 𝑦](𝐴𝑦) ∈ Fin)
28273ad2ant3 1135 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ¬ [∅ / 𝑦](𝐴𝑦) ∈ Fin)
29 sscon 4166 . . . . 5 (𝑤𝑧 → (𝐴𝑧) ⊆ (𝐴𝑤))
30 ssfi 9240 . . . . . 6 (((𝐴𝑤) ∈ Fin ∧ (𝐴𝑧) ⊆ (𝐴𝑤)) → (𝐴𝑧) ∈ Fin)
3130expcom 413 . . . . 5 ((𝐴𝑧) ⊆ (𝐴𝑤) → ((𝐴𝑤) ∈ Fin → (𝐴𝑧) ∈ Fin))
3229, 31syl 17 . . . 4 (𝑤𝑧 → ((𝐴𝑤) ∈ Fin → (𝐴𝑧) ∈ Fin))
33 vex 3492 . . . . 5 𝑤 ∈ V
34 difeq2 4143 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝑦) = (𝐴𝑤))
3534eleq1d 2829 . . . . 5 (𝑦 = 𝑤 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑤) ∈ Fin))
3633, 35sbcie 3848 . . . 4 ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑤) ∈ Fin)
37 vex 3492 . . . . 5 𝑧 ∈ V
38 difeq2 4143 . . . . . 6 (𝑦 = 𝑧 → (𝐴𝑦) = (𝐴𝑧))
3938eleq1d 2829 . . . . 5 (𝑦 = 𝑧 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑧) ∈ Fin))
4037, 39sbcie 3848 . . . 4 ([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑧) ∈ Fin)
4132, 36, 403imtr4g 296 . . 3 (𝑤𝑧 → ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴𝑦) ∈ Fin))
42413ad2ant3 1135 . 2 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑧) → ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴𝑦) ∈ Fin))
43 difindi 4311 . . . . 5 (𝐴 ∖ (𝑧𝑤)) = ((𝐴𝑧) ∪ (𝐴𝑤))
44 unfi 9238 . . . . 5 (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → ((𝐴𝑧) ∪ (𝐴𝑤)) ∈ Fin)
4543, 44eqeltrid 2848 . . . 4 (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → (𝐴 ∖ (𝑧𝑤)) ∈ Fin)
4645a1i 11 . . 3 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑋) → (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → (𝐴 ∖ (𝑧𝑤)) ∈ Fin))
4740, 36anbi12i 627 . . 3 (([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴𝑦) ∈ Fin) ↔ ((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin))
4837inex1 5335 . . . 4 (𝑧𝑤) ∈ V
49 difeq2 4143 . . . . 5 (𝑦 = (𝑧𝑤) → (𝐴𝑦) = (𝐴 ∖ (𝑧𝑤)))
5049eleq1d 2829 . . . 4 (𝑦 = (𝑧𝑤) → ((𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧𝑤)) ∈ Fin))
5148, 50sbcie 3848 . . 3 ([(𝑧𝑤) / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧𝑤)) ∈ Fin)
5246, 47, 513imtr4g 296 . 2 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑋) → (([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴𝑦) ∈ Fin) → [(𝑧𝑤) / 𝑦](𝐴𝑦) ∈ Fin))
537, 8, 19, 28, 42, 52isfild 23887 1 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  [wsbc 3804  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  cfv 6573  Fincfn 9003  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-fin 9007  df-fbas 21384  df-fil 23875
This theorem is referenced by:  ufinffr  23958
  Copyright terms: Public domain W3C validator