Step | Hyp | Ref
| Expression |
1 | | difeq2 4047 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) |
2 | 1 | eleq1d 2823 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
3 | 2 | elrab 3617 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin)) |
4 | | velpw 4535 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋) |
5 | 4 | anbi1i 623 |
. . . 4
⊢ ((𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin) ↔ (𝑦 ⊆ 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin)) |
6 | 3, 5 | bitri 274 |
. . 3
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ↔ (𝑦 ⊆ 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin)) |
7 | 6 | a1i 11 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ↔ (𝑦 ⊆ 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin))) |
8 | | simp1 1134 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → 𝑋 ∈ 𝑉) |
9 | | ssdif0 4294 |
. . . . 5
⊢ (𝐴 ⊆ 𝑋 ↔ (𝐴 ∖ 𝑋) = ∅) |
10 | | 0fin 8916 |
. . . . . 6
⊢ ∅
∈ Fin |
11 | | eleq1 2826 |
. . . . . 6
⊢ ((𝐴 ∖ 𝑋) = ∅ → ((𝐴 ∖ 𝑋) ∈ Fin ↔ ∅ ∈
Fin)) |
12 | 10, 11 | mpbiri 257 |
. . . . 5
⊢ ((𝐴 ∖ 𝑋) = ∅ → (𝐴 ∖ 𝑋) ∈ Fin) |
13 | 9, 12 | sylbi 216 |
. . . 4
⊢ (𝐴 ⊆ 𝑋 → (𝐴 ∖ 𝑋) ∈ Fin) |
14 | | difeq2 4047 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (𝐴 ∖ 𝑦) = (𝐴 ∖ 𝑋)) |
15 | 14 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = 𝑋 → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) |
16 | 15 | sbcieg 3751 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) |
17 | 16 | biimpar 477 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∖ 𝑋) ∈ Fin) → [𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
18 | 13, 17 | sylan2 592 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → [𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
19 | 18 | 3adant3 1130 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → [𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
20 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
21 | | difeq2 4047 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝐴 ∖ 𝑦) = (𝐴 ∖ ∅)) |
22 | 21 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = ∅ → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈
Fin)) |
23 | 20, 22 | sbcie 3754 |
. . . . 5
⊢
([∅ / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈
Fin) |
24 | | dif0 4303 |
. . . . . 6
⊢ (𝐴 ∖ ∅) = 𝐴 |
25 | 24 | eleq1i 2829 |
. . . . 5
⊢ ((𝐴 ∖ ∅) ∈ Fin
↔ 𝐴 ∈
Fin) |
26 | 23, 25 | sylbb 218 |
. . . 4
⊢
([∅ / 𝑦](𝐴 ∖ 𝑦) ∈ Fin → 𝐴 ∈ Fin) |
27 | 26 | con3i 154 |
. . 3
⊢ (¬
𝐴 ∈ Fin → ¬
[∅ / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
28 | 27 | 3ad2ant3 1133 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → ¬ [∅ /
𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
29 | | sscon 4069 |
. . . . 5
⊢ (𝑤 ⊆ 𝑧 → (𝐴 ∖ 𝑧) ⊆ (𝐴 ∖ 𝑤)) |
30 | | ssfi 8918 |
. . . . . 6
⊢ (((𝐴 ∖ 𝑤) ∈ Fin ∧ (𝐴 ∖ 𝑧) ⊆ (𝐴 ∖ 𝑤)) → (𝐴 ∖ 𝑧) ∈ Fin) |
31 | 30 | expcom 413 |
. . . . 5
⊢ ((𝐴 ∖ 𝑧) ⊆ (𝐴 ∖ 𝑤) → ((𝐴 ∖ 𝑤) ∈ Fin → (𝐴 ∖ 𝑧) ∈ Fin)) |
32 | 29, 31 | syl 17 |
. . . 4
⊢ (𝑤 ⊆ 𝑧 → ((𝐴 ∖ 𝑤) ∈ Fin → (𝐴 ∖ 𝑧) ∈ Fin)) |
33 | | vex 3426 |
. . . . 5
⊢ 𝑤 ∈ V |
34 | | difeq2 4047 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝐴 ∖ 𝑦) = (𝐴 ∖ 𝑤)) |
35 | 34 | eleq1d 2823 |
. . . . 5
⊢ (𝑦 = 𝑤 → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑤) ∈ Fin)) |
36 | 33, 35 | sbcie 3754 |
. . . 4
⊢
([𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑤) ∈ Fin) |
37 | | vex 3426 |
. . . . 5
⊢ 𝑧 ∈ V |
38 | | difeq2 4047 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝐴 ∖ 𝑦) = (𝐴 ∖ 𝑧)) |
39 | 38 | eleq1d 2823 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑧) ∈ Fin)) |
40 | 37, 39 | sbcie 3754 |
. . . 4
⊢
([𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑧) ∈ Fin) |
41 | 32, 36, 40 | 3imtr4g 295 |
. . 3
⊢ (𝑤 ⊆ 𝑧 → ([𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin)) |
42 | 41 | 3ad2ant3 1133 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧) → ([𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin)) |
43 | | difindi 4212 |
. . . . 5
⊢ (𝐴 ∖ (𝑧 ∩ 𝑤)) = ((𝐴 ∖ 𝑧) ∪ (𝐴 ∖ 𝑤)) |
44 | | unfi 8917 |
. . . . 5
⊢ (((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin) → ((𝐴 ∖ 𝑧) ∪ (𝐴 ∖ 𝑤)) ∈ Fin) |
45 | 43, 44 | eqeltrid 2843 |
. . . 4
⊢ (((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin) → (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin) |
46 | 45 | a1i 11 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋) → (((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin) → (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin)) |
47 | 40, 36 | anbi12i 626 |
. . 3
⊢
(([𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) ↔ ((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin)) |
48 | 37 | inex1 5236 |
. . . 4
⊢ (𝑧 ∩ 𝑤) ∈ V |
49 | | difeq2 4047 |
. . . . 5
⊢ (𝑦 = (𝑧 ∩ 𝑤) → (𝐴 ∖ 𝑦) = (𝐴 ∖ (𝑧 ∩ 𝑤))) |
50 | 49 | eleq1d 2823 |
. . . 4
⊢ (𝑦 = (𝑧 ∩ 𝑤) → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin)) |
51 | 48, 50 | sbcie 3754 |
. . 3
⊢
([(𝑧 ∩
𝑤) / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin) |
52 | 46, 47, 51 | 3imtr4g 295 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋) → (([𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) → [(𝑧 ∩ 𝑤) / 𝑦](𝐴 ∖ 𝑦) ∈ Fin)) |
53 | 7, 8, 19, 28, 42, 52 | isfild 22917 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ∈ (Fil‘𝑋)) |