MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csdfil Structured version   Visualization version   GIF version

Theorem csdfil 23918
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
csdfil ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Distinct variable group:   𝑥,𝑋

Proof of Theorem csdfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4130 . . . . . 6 (𝑥 = 𝑦 → (𝑋𝑥) = (𝑋𝑦))
21breq1d 5158 . . . . 5 (𝑥 = 𝑦 → ((𝑋𝑥) ≺ 𝑋 ↔ (𝑋𝑦) ≺ 𝑋))
32elrab 3695 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
4 velpw 4610 . . . . 5 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
54anbi1i 624 . . . 4 ((𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋) ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
63, 5bitri 275 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
76a1i 11 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋)))
8 simpl 482 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ∈ dom card)
9 difid 4382 . . . 4 (𝑋𝑋) = ∅
10 infn0 9338 . . . . . 6 (ω ≼ 𝑋𝑋 ≠ ∅)
1110adantl 481 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ≠ ∅)
12 0sdomg 9143 . . . . . 6 (𝑋 ∈ dom card → (∅ ≺ 𝑋𝑋 ≠ ∅))
1312adantr 480 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (∅ ≺ 𝑋𝑋 ≠ ∅))
1411, 13mpbird 257 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ∅ ≺ 𝑋)
159, 14eqbrtrid 5183 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑋𝑋) ≺ 𝑋)
16 difeq2 4130 . . . . . 6 (𝑦 = 𝑋 → (𝑋𝑦) = (𝑋𝑋))
1716breq1d 5158 . . . . 5 (𝑦 = 𝑋 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
1817sbcieg 3832 . . . 4 (𝑋 ∈ dom card → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
1918adantr 480 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
2015, 19mpbird 257 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → [𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋)
21 sdomirr 9153 . . 3 ¬ 𝑋𝑋
22 0ex 5313 . . . . 5 ∅ ∈ V
23 difeq2 4130 . . . . . . 7 (𝑦 = ∅ → (𝑋𝑦) = (𝑋 ∖ ∅))
24 dif0 4384 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2523, 24eqtrdi 2791 . . . . . 6 (𝑦 = ∅ → (𝑋𝑦) = 𝑋)
2625breq1d 5158 . . . . 5 (𝑦 = ∅ → ((𝑋𝑦) ≺ 𝑋𝑋𝑋))
2722, 26sbcie 3835 . . . 4 ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋)
2827a1i 11 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋))
2921, 28mtbiri 327 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ¬ [∅ / 𝑦](𝑋𝑦) ≺ 𝑋)
30 simp1l 1196 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → 𝑋 ∈ dom card)
3130difexd 5337 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑤) ∈ V)
32 sscon 4153 . . . . . 6 (𝑤𝑧 → (𝑋𝑧) ⊆ (𝑋𝑤))
33323ad2ant3 1134 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ⊆ (𝑋𝑤))
34 ssdomg 9039 . . . . 5 ((𝑋𝑤) ∈ V → ((𝑋𝑧) ⊆ (𝑋𝑤) → (𝑋𝑧) ≼ (𝑋𝑤)))
3531, 33, 34sylc 65 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ≼ (𝑋𝑤))
36 domsdomtr 9151 . . . . 5 (((𝑋𝑧) ≼ (𝑋𝑤) ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋𝑧) ≺ 𝑋)
3736ex 412 . . . 4 ((𝑋𝑧) ≼ (𝑋𝑤) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
3835, 37syl 17 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
39 vex 3482 . . . 4 𝑤 ∈ V
40 difeq2 4130 . . . . 5 (𝑦 = 𝑤 → (𝑋𝑦) = (𝑋𝑤))
4140breq1d 5158 . . . 4 (𝑦 = 𝑤 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋))
4239, 41sbcie 3835 . . 3 ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋)
43 vex 3482 . . . 4 𝑧 ∈ V
44 difeq2 4130 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
4544breq1d 5158 . . . 4 (𝑦 = 𝑧 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋))
4643, 45sbcie 3835 . . 3 ([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋)
4738, 42, 463imtr4g 296 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋))
48 infunsdom 10251 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋)) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
4948ex 412 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋))
50 difindi 4298 . . . . . 6 (𝑋 ∖ (𝑧𝑤)) = ((𝑋𝑧) ∪ (𝑋𝑤))
5150breq1i 5155 . . . . 5 ((𝑋 ∖ (𝑧𝑤)) ≺ 𝑋 ↔ ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
5249, 51imbitrrdi 252 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
53523ad2ant1 1132 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
5446, 42anbi12i 628 . . 3 (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) ↔ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋))
5543inex1 5323 . . . 4 (𝑧𝑤) ∈ V
56 difeq2 4130 . . . . 5 (𝑦 = (𝑧𝑤) → (𝑋𝑦) = (𝑋 ∖ (𝑧𝑤)))
5756breq1d 5158 . . . 4 (𝑦 = (𝑧𝑤) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
5855, 57sbcie 3835 . . 3 ([(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋)
5953, 54, 583imtr4g 296 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) → [(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋))
607, 8, 20, 29, 47, 59isfild 23882 1 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  [wsbc 3791  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   class class class wbr 5148  dom cdm 5689  cfv 6563  ωcom 7887  cdom 8982  csdm 8983  cardccrd 9973  Filcfil 23869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-dju 9939  df-card 9977  df-fbas 21379  df-fil 23870
This theorem is referenced by:  ufilen  23954
  Copyright terms: Public domain W3C validator