MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csdfil Structured version   Visualization version   GIF version

Theorem csdfil 23819
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
csdfil ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Distinct variable group:   𝑥,𝑋

Proof of Theorem csdfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4071 . . . . . 6 (𝑥 = 𝑦 → (𝑋𝑥) = (𝑋𝑦))
21breq1d 5105 . . . . 5 (𝑥 = 𝑦 → ((𝑋𝑥) ≺ 𝑋 ↔ (𝑋𝑦) ≺ 𝑋))
32elrab 3644 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
4 velpw 4556 . . . . 5 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
54anbi1i 624 . . . 4 ((𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋) ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
63, 5bitri 275 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
76a1i 11 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋)))
8 simpl 482 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ∈ dom card)
9 difid 4327 . . . 4 (𝑋𝑋) = ∅
10 infn0 9196 . . . . . 6 (ω ≼ 𝑋𝑋 ≠ ∅)
1110adantl 481 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ≠ ∅)
12 0sdomg 9029 . . . . . 6 (𝑋 ∈ dom card → (∅ ≺ 𝑋𝑋 ≠ ∅))
1312adantr 480 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (∅ ≺ 𝑋𝑋 ≠ ∅))
1411, 13mpbird 257 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ∅ ≺ 𝑋)
159, 14eqbrtrid 5130 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑋𝑋) ≺ 𝑋)
16 difeq2 4071 . . . . . 6 (𝑦 = 𝑋 → (𝑋𝑦) = (𝑋𝑋))
1716breq1d 5105 . . . . 5 (𝑦 = 𝑋 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
1817sbcieg 3778 . . . 4 (𝑋 ∈ dom card → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
1918adantr 480 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
2015, 19mpbird 257 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → [𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋)
21 sdomirr 9037 . . 3 ¬ 𝑋𝑋
22 0ex 5249 . . . . 5 ∅ ∈ V
23 difeq2 4071 . . . . . . 7 (𝑦 = ∅ → (𝑋𝑦) = (𝑋 ∖ ∅))
24 dif0 4329 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2523, 24eqtrdi 2784 . . . . . 6 (𝑦 = ∅ → (𝑋𝑦) = 𝑋)
2625breq1d 5105 . . . . 5 (𝑦 = ∅ → ((𝑋𝑦) ≺ 𝑋𝑋𝑋))
2722, 26sbcie 3780 . . . 4 ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋)
2827a1i 11 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋))
2921, 28mtbiri 327 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ¬ [∅ / 𝑦](𝑋𝑦) ≺ 𝑋)
30 simp1l 1198 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → 𝑋 ∈ dom card)
3130difexd 5273 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑤) ∈ V)
32 sscon 4094 . . . . . 6 (𝑤𝑧 → (𝑋𝑧) ⊆ (𝑋𝑤))
33323ad2ant3 1135 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ⊆ (𝑋𝑤))
34 ssdomg 8932 . . . . 5 ((𝑋𝑤) ∈ V → ((𝑋𝑧) ⊆ (𝑋𝑤) → (𝑋𝑧) ≼ (𝑋𝑤)))
3531, 33, 34sylc 65 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ≼ (𝑋𝑤))
36 domsdomtr 9035 . . . . 5 (((𝑋𝑧) ≼ (𝑋𝑤) ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋𝑧) ≺ 𝑋)
3736ex 412 . . . 4 ((𝑋𝑧) ≼ (𝑋𝑤) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
3835, 37syl 17 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
39 vex 3442 . . . 4 𝑤 ∈ V
40 difeq2 4071 . . . . 5 (𝑦 = 𝑤 → (𝑋𝑦) = (𝑋𝑤))
4140breq1d 5105 . . . 4 (𝑦 = 𝑤 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋))
4239, 41sbcie 3780 . . 3 ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋)
43 vex 3442 . . . 4 𝑧 ∈ V
44 difeq2 4071 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
4544breq1d 5105 . . . 4 (𝑦 = 𝑧 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋))
4643, 45sbcie 3780 . . 3 ([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋)
4738, 42, 463imtr4g 296 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋))
48 infunsdom 10114 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋)) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
4948ex 412 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋))
50 difindi 4243 . . . . . 6 (𝑋 ∖ (𝑧𝑤)) = ((𝑋𝑧) ∪ (𝑋𝑤))
5150breq1i 5102 . . . . 5 ((𝑋 ∖ (𝑧𝑤)) ≺ 𝑋 ↔ ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
5249, 51imbitrrdi 252 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
53523ad2ant1 1133 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
5446, 42anbi12i 628 . . 3 (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) ↔ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋))
5543inex1 5259 . . . 4 (𝑧𝑤) ∈ V
56 difeq2 4071 . . . . 5 (𝑦 = (𝑧𝑤) → (𝑋𝑦) = (𝑋 ∖ (𝑧𝑤)))
5756breq1d 5105 . . . 4 (𝑦 = (𝑧𝑤) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
5855, 57sbcie 3780 . . 3 ([(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋)
5953, 54, 583imtr4g 296 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) → [(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋))
607, 8, 20, 29, 47, 59isfild 23783 1 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  {crab 3397  Vcvv 3438  [wsbc 3738  cdif 3896  cun 3897  cin 3898  wss 3899  c0 4284  𝒫 cpw 4551   class class class wbr 5095  dom cdm 5621  cfv 6489  ωcom 7805  cdom 8876  csdm 8877  cardccrd 9838  Filcfil 23770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-oi 9406  df-dju 9804  df-card 9842  df-fbas 21298  df-fil 23771
This theorem is referenced by:  ufilen  23855
  Copyright terms: Public domain W3C validator