MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csdfil Structured version   Visualization version   GIF version

Theorem csdfil 23802
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
csdfil ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Distinct variable group:   𝑥,𝑋

Proof of Theorem csdfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 4068 . . . . . 6 (𝑥 = 𝑦 → (𝑋𝑥) = (𝑋𝑦))
21breq1d 5099 . . . . 5 (𝑥 = 𝑦 → ((𝑋𝑥) ≺ 𝑋 ↔ (𝑋𝑦) ≺ 𝑋))
32elrab 3645 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
4 velpw 4553 . . . . 5 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
54anbi1i 624 . . . 4 ((𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋) ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
63, 5bitri 275 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
76a1i 11 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋)))
8 simpl 482 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ∈ dom card)
9 difid 4324 . . . 4 (𝑋𝑋) = ∅
10 infn0 9181 . . . . . 6 (ω ≼ 𝑋𝑋 ≠ ∅)
1110adantl 481 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ≠ ∅)
12 0sdomg 9014 . . . . . 6 (𝑋 ∈ dom card → (∅ ≺ 𝑋𝑋 ≠ ∅))
1312adantr 480 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (∅ ≺ 𝑋𝑋 ≠ ∅))
1411, 13mpbird 257 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ∅ ≺ 𝑋)
159, 14eqbrtrid 5124 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑋𝑋) ≺ 𝑋)
16 difeq2 4068 . . . . . 6 (𝑦 = 𝑋 → (𝑋𝑦) = (𝑋𝑋))
1716breq1d 5099 . . . . 5 (𝑦 = 𝑋 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
1817sbcieg 3779 . . . 4 (𝑋 ∈ dom card → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
1918adantr 480 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
2015, 19mpbird 257 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → [𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋)
21 sdomirr 9022 . . 3 ¬ 𝑋𝑋
22 0ex 5243 . . . . 5 ∅ ∈ V
23 difeq2 4068 . . . . . . 7 (𝑦 = ∅ → (𝑋𝑦) = (𝑋 ∖ ∅))
24 dif0 4326 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2523, 24eqtrdi 2781 . . . . . 6 (𝑦 = ∅ → (𝑋𝑦) = 𝑋)
2625breq1d 5099 . . . . 5 (𝑦 = ∅ → ((𝑋𝑦) ≺ 𝑋𝑋𝑋))
2722, 26sbcie 3781 . . . 4 ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋)
2827a1i 11 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋))
2921, 28mtbiri 327 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ¬ [∅ / 𝑦](𝑋𝑦) ≺ 𝑋)
30 simp1l 1198 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → 𝑋 ∈ dom card)
3130difexd 5267 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑤) ∈ V)
32 sscon 4091 . . . . . 6 (𝑤𝑧 → (𝑋𝑧) ⊆ (𝑋𝑤))
33323ad2ant3 1135 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ⊆ (𝑋𝑤))
34 ssdomg 8917 . . . . 5 ((𝑋𝑤) ∈ V → ((𝑋𝑧) ⊆ (𝑋𝑤) → (𝑋𝑧) ≼ (𝑋𝑤)))
3531, 33, 34sylc 65 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ≼ (𝑋𝑤))
36 domsdomtr 9020 . . . . 5 (((𝑋𝑧) ≼ (𝑋𝑤) ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋𝑧) ≺ 𝑋)
3736ex 412 . . . 4 ((𝑋𝑧) ≼ (𝑋𝑤) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
3835, 37syl 17 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
39 vex 3438 . . . 4 𝑤 ∈ V
40 difeq2 4068 . . . . 5 (𝑦 = 𝑤 → (𝑋𝑦) = (𝑋𝑤))
4140breq1d 5099 . . . 4 (𝑦 = 𝑤 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋))
4239, 41sbcie 3781 . . 3 ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋)
43 vex 3438 . . . 4 𝑧 ∈ V
44 difeq2 4068 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
4544breq1d 5099 . . . 4 (𝑦 = 𝑧 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋))
4643, 45sbcie 3781 . . 3 ([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋)
4738, 42, 463imtr4g 296 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋))
48 infunsdom 10096 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋)) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
4948ex 412 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋))
50 difindi 4240 . . . . . 6 (𝑋 ∖ (𝑧𝑤)) = ((𝑋𝑧) ∪ (𝑋𝑤))
5150breq1i 5096 . . . . 5 ((𝑋 ∖ (𝑧𝑤)) ≺ 𝑋 ↔ ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
5249, 51imbitrrdi 252 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
53523ad2ant1 1133 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
5446, 42anbi12i 628 . . 3 (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) ↔ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋))
5543inex1 5253 . . . 4 (𝑧𝑤) ∈ V
56 difeq2 4068 . . . . 5 (𝑦 = (𝑧𝑤) → (𝑋𝑦) = (𝑋 ∖ (𝑧𝑤)))
5756breq1d 5099 . . . 4 (𝑦 = (𝑧𝑤) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
5855, 57sbcie 3781 . . 3 ([(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋)
5953, 54, 583imtr4g 296 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) → [(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋))
607, 8, 20, 29, 47, 59isfild 23766 1 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  {crab 3393  Vcvv 3434  [wsbc 3739  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548   class class class wbr 5089  dom cdm 5614  cfv 6477  ωcom 7791  cdom 8862  csdm 8863  cardccrd 9820  Filcfil 23753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-dju 9786  df-card 9824  df-fbas 21281  df-fil 23754
This theorem is referenced by:  ufilen  23838
  Copyright terms: Public domain W3C validator