MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csdfil Structured version   Visualization version   GIF version

Theorem csdfil 22023
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
csdfil ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Distinct variable group:   𝑥,𝑋

Proof of Theorem csdfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3919 . . . . . 6 (𝑥 = 𝑦 → (𝑋𝑥) = (𝑋𝑦))
21breq1d 4852 . . . . 5 (𝑥 = 𝑦 → ((𝑋𝑥) ≺ 𝑋 ↔ (𝑋𝑦) ≺ 𝑋))
32elrab 3555 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
4 selpw 4355 . . . . 5 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
54anbi1i 618 . . . 4 ((𝑦 ∈ 𝒫 𝑋 ∧ (𝑋𝑦) ≺ 𝑋) ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
63, 5bitri 267 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋))
76a1i 11 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ↔ (𝑦𝑋 ∧ (𝑋𝑦) ≺ 𝑋)))
8 elex 3399 . . 3 (𝑋 ∈ dom card → 𝑋 ∈ V)
98adantr 473 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ∈ V)
10 difid 4148 . . . 4 (𝑋𝑋) = ∅
11 infn0 8463 . . . . . 6 (ω ≼ 𝑋𝑋 ≠ ∅)
1211adantl 474 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → 𝑋 ≠ ∅)
13 0sdomg 8330 . . . . . 6 (𝑋 ∈ dom card → (∅ ≺ 𝑋𝑋 ≠ ∅))
1413adantr 473 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (∅ ≺ 𝑋𝑋 ≠ ∅))
1512, 14mpbird 249 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ∅ ≺ 𝑋)
1610, 15syl5eqbr 4877 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (𝑋𝑋) ≺ 𝑋)
17 difeq2 3919 . . . . . 6 (𝑦 = 𝑋 → (𝑋𝑦) = (𝑋𝑋))
1817breq1d 4852 . . . . 5 (𝑦 = 𝑋 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
1918sbcieg 3665 . . . 4 (𝑋 ∈ dom card → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
2019adantr 473 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑋) ≺ 𝑋))
2116, 20mpbird 249 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → [𝑋 / 𝑦](𝑋𝑦) ≺ 𝑋)
22 sdomirr 8338 . . 3 ¬ 𝑋𝑋
23 0ex 4983 . . . . 5 ∅ ∈ V
24 difeq2 3919 . . . . . . 7 (𝑦 = ∅ → (𝑋𝑦) = (𝑋 ∖ ∅))
25 dif0 4150 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2624, 25syl6eq 2848 . . . . . 6 (𝑦 = ∅ → (𝑋𝑦) = 𝑋)
2726breq1d 4852 . . . . 5 (𝑦 = ∅ → ((𝑋𝑦) ≺ 𝑋𝑋𝑋))
2823, 27sbcie 3667 . . . 4 ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋)
2928a1i 11 . . 3 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ([∅ / 𝑦](𝑋𝑦) ≺ 𝑋𝑋𝑋))
3022, 29mtbiri 319 . 2 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → ¬ [∅ / 𝑦](𝑋𝑦) ≺ 𝑋)
31 simp1l 1255 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → 𝑋 ∈ dom card)
32 difexg 5002 . . . . . 6 (𝑋 ∈ dom card → (𝑋𝑤) ∈ V)
3331, 32syl 17 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑤) ∈ V)
34 sscon 3941 . . . . . 6 (𝑤𝑧 → (𝑋𝑧) ⊆ (𝑋𝑤))
35343ad2ant3 1166 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ⊆ (𝑋𝑤))
36 ssdomg 8240 . . . . 5 ((𝑋𝑤) ∈ V → ((𝑋𝑧) ⊆ (𝑋𝑤) → (𝑋𝑧) ≼ (𝑋𝑤)))
3733, 35, 36sylc 65 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → (𝑋𝑧) ≼ (𝑋𝑤))
38 domsdomtr 8336 . . . . 5 (((𝑋𝑧) ≼ (𝑋𝑤) ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋𝑧) ≺ 𝑋)
3938ex 402 . . . 4 ((𝑋𝑧) ≼ (𝑋𝑤) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
4037, 39syl 17 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ((𝑋𝑤) ≺ 𝑋 → (𝑋𝑧) ≺ 𝑋))
41 vex 3387 . . . 4 𝑤 ∈ V
42 difeq2 3919 . . . . 5 (𝑦 = 𝑤 → (𝑋𝑦) = (𝑋𝑤))
4342breq1d 4852 . . . 4 (𝑦 = 𝑤 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋))
4441, 43sbcie 3667 . . 3 ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑤) ≺ 𝑋)
45 vex 3387 . . . 4 𝑧 ∈ V
46 difeq2 3919 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
4746breq1d 4852 . . . 4 (𝑦 = 𝑧 → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋))
4845, 47sbcie 3667 . . 3 ([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋𝑧) ≺ 𝑋)
4940, 44, 483imtr4g 288 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑧) → ([𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋))
50 infunsdom 9323 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋)) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
5150ex 402 . . . . 5 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋))
52 difindi 4081 . . . . . 6 (𝑋 ∖ (𝑧𝑤)) = ((𝑋𝑧) ∪ (𝑋𝑤))
5352breq1i 4849 . . . . 5 ((𝑋 ∖ (𝑧𝑤)) ≺ 𝑋 ↔ ((𝑋𝑧) ∪ (𝑋𝑤)) ≺ 𝑋)
5451, 53syl6ibr 244 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
55543ad2ant1 1164 . . 3 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋) → (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
5648, 44anbi12i 621 . . 3 (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) ↔ ((𝑋𝑧) ≺ 𝑋 ∧ (𝑋𝑤) ≺ 𝑋))
5745inex1 4993 . . . 4 (𝑧𝑤) ∈ V
58 difeq2 3919 . . . . 5 (𝑦 = (𝑧𝑤) → (𝑋𝑦) = (𝑋 ∖ (𝑧𝑤)))
5958breq1d 4852 . . . 4 (𝑦 = (𝑧𝑤) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋))
6057, 59sbcie 3667 . . 3 ([(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑧𝑤)) ≺ 𝑋)
6155, 56, 603imtr4g 288 . 2 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝑧𝑋𝑤𝑋) → (([𝑧 / 𝑦](𝑋𝑦) ≺ 𝑋[𝑤 / 𝑦](𝑋𝑦) ≺ 𝑋) → [(𝑧𝑤) / 𝑦](𝑋𝑦) ≺ 𝑋))
627, 9, 21, 30, 49, 61isfild 21987 1 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2970  {crab 3092  Vcvv 3384  [wsbc 3632  cdif 3765  cun 3766  cin 3767  wss 3768  c0 4114  𝒫 cpw 4348   class class class wbr 4842  dom cdm 5311  cfv 6100  ωcom 7298  cdom 8192  csdm 8193  cardccrd 9046  Filcfil 21974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-inf2 8787
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-isom 6109  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-2o 7799  df-oadd 7802  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-oi 8656  df-card 9050  df-cda 9277  df-fbas 20062  df-fil 21975
This theorem is referenced by:  ufilen  22059
  Copyright terms: Public domain W3C validator