Step | Hyp | Ref
| Expression |
1 | | sseq2 3946 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦)) |
2 | 1 | elrab 3623 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦)) |
3 | | velpw 4538 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
4 | 3 | anbi1i 624 |
. . . 4
⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦) ↔ (𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦)) |
5 | 2, 4 | bitri 274 |
. . 3
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ↔ (𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦)) |
6 | 5 | a1i 11 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ↔ (𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦))) |
7 | | simp1 1135 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → 𝐴 ∈ 𝑉) |
8 | | simp2 1136 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → 𝐵 ⊆ 𝐴) |
9 | | sseq2 3946 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴)) |
10 | 9 | sbcieg 3755 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴)) |
11 | 7, 10 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ([𝐴 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴)) |
12 | 8, 11 | mpbird 256 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → [𝐴 / 𝑦]𝐵 ⊆ 𝑦) |
13 | | ss0 4332 |
. . . . 5
⊢ (𝐵 ⊆ ∅ → 𝐵 = ∅) |
14 | 13 | necon3ai 2968 |
. . . 4
⊢ (𝐵 ≠ ∅ → ¬ 𝐵 ⊆
∅) |
15 | 14 | 3ad2ant3 1134 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ¬ 𝐵 ⊆
∅) |
16 | | 0ex 5229 |
. . . 4
⊢ ∅
∈ V |
17 | | sseq2 3946 |
. . . 4
⊢ (𝑦 = ∅ → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅)) |
18 | 16, 17 | sbcie 3758 |
. . 3
⊢
([∅ / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅) |
19 | 15, 18 | sylnibr 329 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ¬ [∅
/ 𝑦]𝐵 ⊆ 𝑦) |
20 | | sstr 3928 |
. . . . 5
⊢ ((𝐵 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑧) → 𝐵 ⊆ 𝑧) |
21 | 20 | expcom 414 |
. . . 4
⊢ (𝑤 ⊆ 𝑧 → (𝐵 ⊆ 𝑤 → 𝐵 ⊆ 𝑧)) |
22 | | vex 3433 |
. . . . 5
⊢ 𝑤 ∈ V |
23 | | sseq2 3946 |
. . . . 5
⊢ (𝑦 = 𝑤 → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤)) |
24 | 22, 23 | sbcie 3758 |
. . . 4
⊢
([𝑤 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤) |
25 | | vex 3433 |
. . . . 5
⊢ 𝑧 ∈ V |
26 | | sseq2 3946 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧)) |
27 | 25, 26 | sbcie 3758 |
. . . 4
⊢
([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧) |
28 | 21, 24, 27 | 3imtr4g 296 |
. . 3
⊢ (𝑤 ⊆ 𝑧 → ([𝑤 / 𝑦]𝐵 ⊆ 𝑦 → [𝑧 / 𝑦]𝐵 ⊆ 𝑦)) |
29 | 28 | 3ad2ant3 1134 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝑧) → ([𝑤 / 𝑦]𝐵 ⊆ 𝑦 → [𝑧 / 𝑦]𝐵 ⊆ 𝑦)) |
30 | | ssin 4164 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤) ↔ 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
31 | 30 | biimpi 215 |
. . . . 5
⊢ ((𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤) → 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
32 | 27, 24, 31 | syl2anb 598 |
. . . 4
⊢
(([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ∧ [𝑤 / 𝑦]𝐵 ⊆ 𝑦) → 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
33 | 25 | inex1 5239 |
. . . . 5
⊢ (𝑧 ∩ 𝑤) ∈ V |
34 | | sseq2 3946 |
. . . . 5
⊢ (𝑦 = (𝑧 ∩ 𝑤) → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ (𝑧 ∩ 𝑤))) |
35 | 33, 34 | sbcie 3758 |
. . . 4
⊢
([(𝑧 ∩
𝑤) / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
36 | 32, 35 | sylibr 233 |
. . 3
⊢
(([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ∧ [𝑤 / 𝑦]𝐵 ⊆ 𝑦) → [(𝑧 ∩ 𝑤) / 𝑦]𝐵 ⊆ 𝑦) |
37 | 36 | a1i 11 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴) → (([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ∧ [𝑤 / 𝑦]𝐵 ⊆ 𝑦) → [(𝑧 ∩ 𝑤) / 𝑦]𝐵 ⊆ 𝑦)) |
38 | 6, 7, 12, 19, 29, 37 | isfild 23019 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ∈ (Fil‘𝐴)) |