| Step | Hyp | Ref
| Expression |
| 1 | | sseq2 4010 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦)) |
| 2 | 1 | elrab 3692 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦)) |
| 3 | | velpw 4605 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| 4 | 3 | anbi1i 624 |
. . . 4
⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦) ↔ (𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦)) |
| 5 | 2, 4 | bitri 275 |
. . 3
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ↔ (𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦)) |
| 6 | 5 | a1i 11 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ↔ (𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦))) |
| 7 | | simp1 1137 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → 𝐴 ∈ 𝑉) |
| 8 | | simp2 1138 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → 𝐵 ⊆ 𝐴) |
| 9 | | sseq2 4010 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴)) |
| 10 | 9 | sbcieg 3828 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴)) |
| 11 | 7, 10 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ([𝐴 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴)) |
| 12 | 8, 11 | mpbird 257 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → [𝐴 / 𝑦]𝐵 ⊆ 𝑦) |
| 13 | | ss0 4402 |
. . . . 5
⊢ (𝐵 ⊆ ∅ → 𝐵 = ∅) |
| 14 | 13 | necon3ai 2965 |
. . . 4
⊢ (𝐵 ≠ ∅ → ¬ 𝐵 ⊆
∅) |
| 15 | 14 | 3ad2ant3 1136 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ¬ 𝐵 ⊆
∅) |
| 16 | | 0ex 5307 |
. . . 4
⊢ ∅
∈ V |
| 17 | | sseq2 4010 |
. . . 4
⊢ (𝑦 = ∅ → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅)) |
| 18 | 16, 17 | sbcie 3830 |
. . 3
⊢
([∅ / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅) |
| 19 | 15, 18 | sylnibr 329 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ¬ [∅
/ 𝑦]𝐵 ⊆ 𝑦) |
| 20 | | sstr 3992 |
. . . . 5
⊢ ((𝐵 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑧) → 𝐵 ⊆ 𝑧) |
| 21 | 20 | expcom 413 |
. . . 4
⊢ (𝑤 ⊆ 𝑧 → (𝐵 ⊆ 𝑤 → 𝐵 ⊆ 𝑧)) |
| 22 | | vex 3484 |
. . . . 5
⊢ 𝑤 ∈ V |
| 23 | | sseq2 4010 |
. . . . 5
⊢ (𝑦 = 𝑤 → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤)) |
| 24 | 22, 23 | sbcie 3830 |
. . . 4
⊢
([𝑤 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤) |
| 25 | | vex 3484 |
. . . . 5
⊢ 𝑧 ∈ V |
| 26 | | sseq2 4010 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧)) |
| 27 | 25, 26 | sbcie 3830 |
. . . 4
⊢
([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧) |
| 28 | 21, 24, 27 | 3imtr4g 296 |
. . 3
⊢ (𝑤 ⊆ 𝑧 → ([𝑤 / 𝑦]𝐵 ⊆ 𝑦 → [𝑧 / 𝑦]𝐵 ⊆ 𝑦)) |
| 29 | 28 | 3ad2ant3 1136 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝑧) → ([𝑤 / 𝑦]𝐵 ⊆ 𝑦 → [𝑧 / 𝑦]𝐵 ⊆ 𝑦)) |
| 30 | | ssin 4239 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤) ↔ 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
| 31 | 30 | biimpi 216 |
. . . . 5
⊢ ((𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤) → 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
| 32 | 27, 24, 31 | syl2anb 598 |
. . . 4
⊢
(([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ∧ [𝑤 / 𝑦]𝐵 ⊆ 𝑦) → 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
| 33 | 25 | inex1 5317 |
. . . . 5
⊢ (𝑧 ∩ 𝑤) ∈ V |
| 34 | | sseq2 4010 |
. . . . 5
⊢ (𝑦 = (𝑧 ∩ 𝑤) → (𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ (𝑧 ∩ 𝑤))) |
| 35 | 33, 34 | sbcie 3830 |
. . . 4
⊢
([(𝑧 ∩
𝑤) / 𝑦]𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ (𝑧 ∩ 𝑤)) |
| 36 | 32, 35 | sylibr 234 |
. . 3
⊢
(([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ∧ [𝑤 / 𝑦]𝐵 ⊆ 𝑦) → [(𝑧 ∩ 𝑤) / 𝑦]𝐵 ⊆ 𝑦) |
| 37 | 36 | a1i 11 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴) → (([𝑧 / 𝑦]𝐵 ⊆ 𝑦 ∧ [𝑤 / 𝑦]𝐵 ⊆ 𝑦) → [(𝑧 ∩ 𝑤) / 𝑦]𝐵 ⊆ 𝑦)) |
| 38 | 6, 7, 12, 19, 29, 37 | isfild 23866 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥} ∈ (Fil‘𝐴)) |