MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfil Structured version   Visualization version   GIF version

Theorem supfil 22500
Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
supfil ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ∈ (Fil‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem supfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3941 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
21elrab 3628 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦 ∈ 𝒫 𝐴𝐵𝑦))
3 velpw 4502 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
43anbi1i 626 . . . 4 ((𝑦 ∈ 𝒫 𝐴𝐵𝑦) ↔ (𝑦𝐴𝐵𝑦))
52, 4bitri 278 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦𝐴𝐵𝑦))
65a1i 11 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦𝐴𝐵𝑦)))
7 simp1 1133 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → 𝐴𝑉)
8 simp2 1134 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → 𝐵𝐴)
9 sseq2 3941 . . . . 5 (𝑦 = 𝐴 → (𝐵𝑦𝐵𝐴))
109sbcieg 3758 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑦]𝐵𝑦𝐵𝐴))
117, 10syl 17 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ([𝐴 / 𝑦]𝐵𝑦𝐵𝐴))
128, 11mpbird 260 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → [𝐴 / 𝑦]𝐵𝑦)
13 ss0 4306 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
1413necon3ai 3012 . . . 4 (𝐵 ≠ ∅ → ¬ 𝐵 ⊆ ∅)
15143ad2ant3 1132 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ¬ 𝐵 ⊆ ∅)
16 0ex 5175 . . . 4 ∅ ∈ V
17 sseq2 3941 . . . 4 (𝑦 = ∅ → (𝐵𝑦𝐵 ⊆ ∅))
1816, 17sbcie 3760 . . 3 ([∅ / 𝑦]𝐵𝑦𝐵 ⊆ ∅)
1915, 18sylnibr 332 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ¬ [∅ / 𝑦]𝐵𝑦)
20 sstr 3923 . . . . 5 ((𝐵𝑤𝑤𝑧) → 𝐵𝑧)
2120expcom 417 . . . 4 (𝑤𝑧 → (𝐵𝑤𝐵𝑧))
22 vex 3444 . . . . 5 𝑤 ∈ V
23 sseq2 3941 . . . . 5 (𝑦 = 𝑤 → (𝐵𝑦𝐵𝑤))
2422, 23sbcie 3760 . . . 4 ([𝑤 / 𝑦]𝐵𝑦𝐵𝑤)
25 vex 3444 . . . . 5 𝑧 ∈ V
26 sseq2 3941 . . . . 5 (𝑦 = 𝑧 → (𝐵𝑦𝐵𝑧))
2725, 26sbcie 3760 . . . 4 ([𝑧 / 𝑦]𝐵𝑦𝐵𝑧)
2821, 24, 273imtr4g 299 . . 3 (𝑤𝑧 → ([𝑤 / 𝑦]𝐵𝑦[𝑧 / 𝑦]𝐵𝑦))
29283ad2ant3 1132 . 2 (((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) ∧ 𝑧𝐴𝑤𝑧) → ([𝑤 / 𝑦]𝐵𝑦[𝑧 / 𝑦]𝐵𝑦))
30 ssin 4157 . . . . . 6 ((𝐵𝑧𝐵𝑤) ↔ 𝐵 ⊆ (𝑧𝑤))
3130biimpi 219 . . . . 5 ((𝐵𝑧𝐵𝑤) → 𝐵 ⊆ (𝑧𝑤))
3227, 24, 31syl2anb 600 . . . 4 (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → 𝐵 ⊆ (𝑧𝑤))
3325inex1 5185 . . . . 5 (𝑧𝑤) ∈ V
34 sseq2 3941 . . . . 5 (𝑦 = (𝑧𝑤) → (𝐵𝑦𝐵 ⊆ (𝑧𝑤)))
3533, 34sbcie 3760 . . . 4 ([(𝑧𝑤) / 𝑦]𝐵𝑦𝐵 ⊆ (𝑧𝑤))
3632, 35sylibr 237 . . 3 (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → [(𝑧𝑤) / 𝑦]𝐵𝑦)
3736a1i 11 . 2 (((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) ∧ 𝑧𝐴𝑤𝐴) → (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → [(𝑧𝑤) / 𝑦]𝐵𝑦))
386, 7, 12, 19, 29, 37isfild 22463 1 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ∈ (Fil‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wne 2987  {crab 3110  [wsbc 3720  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  cfv 6324  Filcfil 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-fbas 20088  df-fil 22451
This theorem is referenced by:  fclscf  22630  flimfnfcls  22633
  Copyright terms: Public domain W3C validator