| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn1suc | Structured version Visualization version GIF version | ||
| Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn1suc.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
| nn1suc.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) |
| nn1suc.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) |
| nn1suc.5 | ⊢ 𝜓 |
| nn1suc.6 | ⊢ (𝑦 ∈ ℕ → 𝜒) |
| Ref | Expression |
|---|---|
| nn1suc | ⊢ (𝐴 ∈ ℕ → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1suc.5 | . . . . 5 ⊢ 𝜓 | |
| 2 | 1ex 11231 | . . . . . 6 ⊢ 1 ∈ V | |
| 3 | nn1suc.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbcie 3807 | . . . . 5 ⊢ ([1 / 𝑥]𝜑 ↔ 𝜓) |
| 5 | 1, 4 | mpbir 231 | . . . 4 ⊢ [1 / 𝑥]𝜑 |
| 6 | 1nn 12251 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 7 | eleq1 2822 | . . . . . . 7 ⊢ (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . 6 ⊢ (𝐴 = 1 → 𝐴 ∈ ℕ) |
| 9 | nn1suc.4 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) | |
| 10 | 9 | sbcieg 3805 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
| 11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
| 12 | dfsbcq 3767 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ [1 / 𝑥]𝜑)) | |
| 13 | 11, 12 | bitr3d 281 | . . . 4 ⊢ (𝐴 = 1 → (𝜃 ↔ [1 / 𝑥]𝜑)) |
| 14 | 5, 13 | mpbiri 258 | . . 3 ⊢ (𝐴 = 1 → 𝜃) |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃)) |
| 16 | ovex 7438 | . . . . . 6 ⊢ (𝑦 + 1) ∈ V | |
| 17 | nn1suc.3 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) | |
| 18 | 16, 17 | sbcie 3807 | . . . . 5 ⊢ ([(𝑦 + 1) / 𝑥]𝜑 ↔ 𝜒) |
| 19 | oveq1 7412 | . . . . . 6 ⊢ (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1)) | |
| 20 | 19 | sbceq1d 3770 | . . . . 5 ⊢ (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
| 21 | 18, 20 | bitr3id 285 | . . . 4 ⊢ (𝑦 = (𝐴 − 1) → (𝜒 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
| 22 | nn1suc.6 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝜒) | |
| 23 | 21, 22 | vtoclga 3556 | . . 3 ⊢ ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑) |
| 24 | nncn 12248 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 25 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 26 | npcan 11491 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴) | |
| 27 | 24, 25, 26 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴) |
| 28 | 27 | sbceq1d 3770 | . . . 4 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 29 | 28, 10 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ 𝜃)) |
| 30 | 23, 29 | imbitrid 244 | . 2 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃)) |
| 31 | nn1m1nn 12261 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | |
| 32 | 15, 30, 31 | mpjaod 860 | 1 ⊢ (𝐴 ∈ ℕ → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 [wsbc 3765 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 − cmin 11466 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-nn 12241 |
| This theorem is referenced by: opsqrlem6 32126 |
| Copyright terms: Public domain | W3C validator |