MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1suc Structured version   Visualization version   GIF version

Theorem nn1suc 11335
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1 (𝑥 = 1 → (𝜑𝜓))
nn1suc.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
nn1suc.4 (𝑥 = 𝐴 → (𝜑𝜃))
nn1suc.5 𝜓
nn1suc.6 (𝑦 ∈ ℕ → 𝜒)
Assertion
Ref Expression
nn1suc (𝐴 ∈ ℕ → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5 𝜓
2 1ex 10324 . . . . . 6 1 ∈ V
3 nn1suc.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
42, 3sbcie 3668 . . . . 5 ([1 / 𝑥]𝜑𝜓)
51, 4mpbir 223 . . . 4 [1 / 𝑥]𝜑
6 1nn 11325 . . . . . . 7 1 ∈ ℕ
7 eleq1 2866 . . . . . . 7 (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 250 . . . . . 6 (𝐴 = 1 → 𝐴 ∈ ℕ)
9 nn1suc.4 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜃))
109sbcieg 3666 . . . . . 6 (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑𝜃))
118, 10syl 17 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑𝜃))
12 dfsbcq 3635 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑[1 / 𝑥]𝜑))
1311, 12bitr3d 273 . . . 4 (𝐴 = 1 → (𝜃[1 / 𝑥]𝜑))
145, 13mpbiri 250 . . 3 (𝐴 = 1 → 𝜃)
1514a1i 11 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃))
16 ovex 6910 . . . . . 6 (𝑦 + 1) ∈ V
17 nn1suc.3 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
1816, 17sbcie 3668 . . . . 5 ([(𝑦 + 1) / 𝑥]𝜑𝜒)
19 oveq1 6885 . . . . . 6 (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1))
2019sbceq1d 3638 . . . . 5 (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
2118, 20syl5bbr 277 . . . 4 (𝑦 = (𝐴 − 1) → (𝜒[((𝐴 − 1) + 1) / 𝑥]𝜑))
22 nn1suc.6 . . . 4 (𝑦 ∈ ℕ → 𝜒)
2321, 22vtoclga 3460 . . 3 ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑)
24 nncn 11321 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
25 ax-1cn 10282 . . . . . 6 1 ∈ ℂ
26 npcan 10582 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
2724, 25, 26sylancl 581 . . . . 5 (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴)
2827sbceq1d 3638 . . . 4 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2928, 10bitrd 271 . . 3 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑𝜃))
3023, 29syl5ib 236 . 2 (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃))
31 nn1m1nn 11334 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
3215, 30, 31mpjaod 887 1 (𝐴 ∈ ℕ → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  [wsbc 3633  (class class class)co 6878  cc 10222  1c1 10225   + caddc 10227  cmin 10556  cn 11312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-ltxr 10368  df-sub 10558  df-nn 11313
This theorem is referenced by:  opsqrlem6  29529
  Copyright terms: Public domain W3C validator