![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn1suc | Structured version Visualization version GIF version |
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1suc.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nn1suc.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) |
nn1suc.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) |
nn1suc.5 | ⊢ 𝜓 |
nn1suc.6 | ⊢ (𝑦 ∈ ℕ → 𝜒) |
Ref | Expression |
---|---|
nn1suc | ⊢ (𝐴 ∈ ℕ → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1suc.5 | . . . . 5 ⊢ 𝜓 | |
2 | 1ex 11286 | . . . . . 6 ⊢ 1 ∈ V | |
3 | nn1suc.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbcie 3848 | . . . . 5 ⊢ ([1 / 𝑥]𝜑 ↔ 𝜓) |
5 | 1, 4 | mpbir 231 | . . . 4 ⊢ [1 / 𝑥]𝜑 |
6 | 1nn 12304 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
7 | eleq1 2832 | . . . . . . 7 ⊢ (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ)) | |
8 | 6, 7 | mpbiri 258 | . . . . . 6 ⊢ (𝐴 = 1 → 𝐴 ∈ ℕ) |
9 | nn1suc.4 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) | |
10 | 9 | sbcieg 3845 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
12 | dfsbcq 3806 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ [1 / 𝑥]𝜑)) | |
13 | 11, 12 | bitr3d 281 | . . . 4 ⊢ (𝐴 = 1 → (𝜃 ↔ [1 / 𝑥]𝜑)) |
14 | 5, 13 | mpbiri 258 | . . 3 ⊢ (𝐴 = 1 → 𝜃) |
15 | 14 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃)) |
16 | ovex 7481 | . . . . . 6 ⊢ (𝑦 + 1) ∈ V | |
17 | nn1suc.3 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) | |
18 | 16, 17 | sbcie 3848 | . . . . 5 ⊢ ([(𝑦 + 1) / 𝑥]𝜑 ↔ 𝜒) |
19 | oveq1 7455 | . . . . . 6 ⊢ (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1)) | |
20 | 19 | sbceq1d 3809 | . . . . 5 ⊢ (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
21 | 18, 20 | bitr3id 285 | . . . 4 ⊢ (𝑦 = (𝐴 − 1) → (𝜒 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
22 | nn1suc.6 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝜒) | |
23 | 21, 22 | vtoclga 3589 | . . 3 ⊢ ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑) |
24 | nncn 12301 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
25 | ax-1cn 11242 | . . . . . 6 ⊢ 1 ∈ ℂ | |
26 | npcan 11545 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴) | |
27 | 24, 25, 26 | sylancl 585 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴) |
28 | 27 | sbceq1d 3809 | . . . 4 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
29 | 28, 10 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ 𝜃)) |
30 | 23, 29 | imbitrid 244 | . 2 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃)) |
31 | nn1m1nn 12314 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | |
32 | 15, 30, 31 | mpjaod 859 | 1 ⊢ (𝐴 ∈ ℕ → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 [wsbc 3804 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 − cmin 11520 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-nn 12294 |
This theorem is referenced by: opsqrlem6 32177 |
Copyright terms: Public domain | W3C validator |