![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn1suc | Structured version Visualization version GIF version |
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1suc.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nn1suc.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) |
nn1suc.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) |
nn1suc.5 | ⊢ 𝜓 |
nn1suc.6 | ⊢ (𝑦 ∈ ℕ → 𝜒) |
Ref | Expression |
---|---|
nn1suc | ⊢ (𝐴 ∈ ℕ → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1suc.5 | . . . . 5 ⊢ 𝜓 | |
2 | 1ex 11159 | . . . . . 6 ⊢ 1 ∈ V | |
3 | nn1suc.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbcie 3786 | . . . . 5 ⊢ ([1 / 𝑥]𝜑 ↔ 𝜓) |
5 | 1, 4 | mpbir 230 | . . . 4 ⊢ [1 / 𝑥]𝜑 |
6 | 1nn 12172 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
7 | eleq1 2822 | . . . . . . 7 ⊢ (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ)) | |
8 | 6, 7 | mpbiri 258 | . . . . . 6 ⊢ (𝐴 = 1 → 𝐴 ∈ ℕ) |
9 | nn1suc.4 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) | |
10 | 9 | sbcieg 3783 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
12 | dfsbcq 3745 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ [1 / 𝑥]𝜑)) | |
13 | 11, 12 | bitr3d 281 | . . . 4 ⊢ (𝐴 = 1 → (𝜃 ↔ [1 / 𝑥]𝜑)) |
14 | 5, 13 | mpbiri 258 | . . 3 ⊢ (𝐴 = 1 → 𝜃) |
15 | 14 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃)) |
16 | ovex 7394 | . . . . . 6 ⊢ (𝑦 + 1) ∈ V | |
17 | nn1suc.3 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) | |
18 | 16, 17 | sbcie 3786 | . . . . 5 ⊢ ([(𝑦 + 1) / 𝑥]𝜑 ↔ 𝜒) |
19 | oveq1 7368 | . . . . . 6 ⊢ (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1)) | |
20 | 19 | sbceq1d 3748 | . . . . 5 ⊢ (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
21 | 18, 20 | bitr3id 285 | . . . 4 ⊢ (𝑦 = (𝐴 − 1) → (𝜒 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
22 | nn1suc.6 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝜒) | |
23 | 21, 22 | vtoclga 3536 | . . 3 ⊢ ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑) |
24 | nncn 12169 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
25 | ax-1cn 11117 | . . . . . 6 ⊢ 1 ∈ ℂ | |
26 | npcan 11418 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴) | |
27 | 24, 25, 26 | sylancl 587 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴) |
28 | 27 | sbceq1d 3748 | . . . 4 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
29 | 28, 10 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ 𝜃)) |
30 | 23, 29 | imbitrid 243 | . 2 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃)) |
31 | nn1m1nn 12182 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | |
32 | 15, 30, 31 | mpjaod 859 | 1 ⊢ (𝐴 ∈ ℕ → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 [wsbc 3743 (class class class)co 7361 ℂcc 11057 1c1 11060 + caddc 11062 − cmin 11393 ℕcn 12161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-ltxr 11202 df-sub 11395 df-nn 12162 |
This theorem is referenced by: opsqrlem6 31136 |
Copyright terms: Public domain | W3C validator |