![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn1suc | Structured version Visualization version GIF version |
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1suc.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nn1suc.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) |
nn1suc.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) |
nn1suc.5 | ⊢ 𝜓 |
nn1suc.6 | ⊢ (𝑦 ∈ ℕ → 𝜒) |
Ref | Expression |
---|---|
nn1suc | ⊢ (𝐴 ∈ ℕ → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1suc.5 | . . . . 5 ⊢ 𝜓 | |
2 | 1ex 11209 | . . . . . 6 ⊢ 1 ∈ V | |
3 | nn1suc.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbcie 3820 | . . . . 5 ⊢ ([1 / 𝑥]𝜑 ↔ 𝜓) |
5 | 1, 4 | mpbir 230 | . . . 4 ⊢ [1 / 𝑥]𝜑 |
6 | 1nn 12222 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
7 | eleq1 2821 | . . . . . . 7 ⊢ (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ)) | |
8 | 6, 7 | mpbiri 257 | . . . . . 6 ⊢ (𝐴 = 1 → 𝐴 ∈ ℕ) |
9 | nn1suc.4 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) | |
10 | 9 | sbcieg 3817 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ 𝜃)) |
12 | dfsbcq 3779 | . . . . 5 ⊢ (𝐴 = 1 → ([𝐴 / 𝑥]𝜑 ↔ [1 / 𝑥]𝜑)) | |
13 | 11, 12 | bitr3d 280 | . . . 4 ⊢ (𝐴 = 1 → (𝜃 ↔ [1 / 𝑥]𝜑)) |
14 | 5, 13 | mpbiri 257 | . . 3 ⊢ (𝐴 = 1 → 𝜃) |
15 | 14 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃)) |
16 | ovex 7441 | . . . . . 6 ⊢ (𝑦 + 1) ∈ V | |
17 | nn1suc.3 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) | |
18 | 16, 17 | sbcie 3820 | . . . . 5 ⊢ ([(𝑦 + 1) / 𝑥]𝜑 ↔ 𝜒) |
19 | oveq1 7415 | . . . . . 6 ⊢ (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1)) | |
20 | 19 | sbceq1d 3782 | . . . . 5 ⊢ (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
21 | 18, 20 | bitr3id 284 | . . . 4 ⊢ (𝑦 = (𝐴 − 1) → (𝜒 ↔ [((𝐴 − 1) + 1) / 𝑥]𝜑)) |
22 | nn1suc.6 | . . . 4 ⊢ (𝑦 ∈ ℕ → 𝜒) | |
23 | 21, 22 | vtoclga 3565 | . . 3 ⊢ ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑) |
24 | nncn 12219 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
25 | ax-1cn 11167 | . . . . . 6 ⊢ 1 ∈ ℂ | |
26 | npcan 11468 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴) | |
27 | 24, 25, 26 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴) |
28 | 27 | sbceq1d 3782 | . . . 4 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
29 | 28, 10 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑 ↔ 𝜃)) |
30 | 23, 29 | imbitrid 243 | . 2 ⊢ (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃)) |
31 | nn1m1nn 12232 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | |
32 | 15, 30, 31 | mpjaod 858 | 1 ⊢ (𝐴 ∈ ℕ → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 [wsbc 3777 (class class class)co 7408 ℂcc 11107 1c1 11110 + caddc 11112 − cmin 11443 ℕcn 12211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-nn 12212 |
This theorem is referenced by: opsqrlem6 31393 |
Copyright terms: Public domain | W3C validator |