Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zindbi Structured version   Visualization version   GIF version

Theorem zindbi 39427
Description: Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
zindbi.1 (𝑦 ∈ ℤ → (𝜓𝜒))
zindbi.2 (𝑥 = 𝑦 → (𝜑𝜓))
zindbi.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
zindbi.4 (𝑥 = 0 → (𝜑𝜃))
zindbi.5 (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
zindbi (𝐴 ∈ ℤ → (𝜃𝜏))
Distinct variable groups:   𝜑,𝑦   𝑥,𝐴,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)

Proof of Theorem zindbi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 10629 . . . 4 0 ∈ V
2 zindbi.4 . . . 4 (𝑥 = 0 → (𝜑𝜃))
31, 2sbcie 3816 . . 3 ([0 / 𝑥]𝜑𝜃)
4 0z 11986 . . . . 5 0 ∈ ℤ
5 eleq1 2905 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 ∈ ℤ ↔ 0 ∈ ℤ))
6 breq1 5066 . . . . . . . . . 10 (𝑦 = 0 → (𝑦𝑏 ↔ 0 ≤ 𝑏))
75, 63anbi13d 1431 . . . . . . . . 9 (𝑦 = 0 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏)))
8 dfsbcq 3778 . . . . . . . . . 10 (𝑦 = 0 → ([𝑦 / 𝑥]𝜑[0 / 𝑥]𝜑))
98bibi1d 345 . . . . . . . . 9 (𝑦 = 0 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
107, 9imbi12d 346 . . . . . . . 8 (𝑦 = 0 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
11 eleq1 2905 . . . . . . . . . 10 (𝑏 = 𝐴 → (𝑏 ∈ ℤ ↔ 𝐴 ∈ ℤ))
12 breq2 5067 . . . . . . . . . 10 (𝑏 = 𝐴 → (0 ≤ 𝑏 ↔ 0 ≤ 𝐴))
1311, 123anbi23d 1432 . . . . . . . . 9 (𝑏 = 𝐴 → ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
14 dfsbcq 3778 . . . . . . . . . 10 (𝑏 = 𝐴 → ([𝑏 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1514bibi2d 344 . . . . . . . . 9 (𝑏 = 𝐴 → (([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
1613, 15imbi12d 346 . . . . . . . 8 (𝑏 = 𝐴 → (((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))))
17 dfsbcq 3778 . . . . . . . . . 10 (𝑎 = 𝑦 → ([𝑎 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
1817bibi2d 344 . . . . . . . . 9 (𝑎 = 𝑦 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)))
19 dfsbcq 3778 . . . . . . . . . 10 (𝑎 = 𝑏 → ([𝑎 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2019bibi2d 344 . . . . . . . . 9 (𝑎 = 𝑏 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
21 dfsbcq 3778 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → ([𝑎 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
2221bibi2d 344 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
23 biidd 263 . . . . . . . . 9 (𝑦 ∈ ℤ → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
24 vex 3503 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
25 zindbi.2 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜑𝜓))
2624, 25sbcie 3816 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜑𝜓)
27 dfsbcq 3778 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2826, 27syl5bbr 286 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜓[𝑏 / 𝑥]𝜑))
29 ovex 7183 . . . . . . . . . . . . . . . 16 (𝑦 + 1) ∈ V
30 zindbi.3 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
3129, 30sbcie 3816 . . . . . . . . . . . . . . 15 ([(𝑦 + 1) / 𝑥]𝜑𝜒)
32 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑦 + 1) = (𝑏 + 1))
3332sbceq1d 3781 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([(𝑦 + 1) / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3431, 33syl5bbr 286 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜒[(𝑏 + 1) / 𝑥]𝜑))
3528, 34bibi12d 347 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → ((𝜓𝜒) ↔ ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
36 zindbi.1 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝜓𝜒))
3735, 36vtoclga 3579 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
38373ad2ant2 1128 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3938bibi2d 344 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4039biimpd 230 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4118, 20, 22, 20, 23, 40uzind 12068 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
4210, 16, 41vtocl2g 3577 . . . . . . 7 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
43423adant3 1126 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
4443pm2.43i 52 . . . . 5 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
454, 44mp3an1 1441 . . . 4 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
46 eleq1 2905 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∈ ℤ ↔ 𝐴 ∈ ℤ))
47 breq1 5066 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝑏𝐴𝑏))
4846, 473anbi13d 1431 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏)))
49 dfsbcq 3778 . . . . . . . . . . 11 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5049bibi1d 345 . . . . . . . . . 10 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
5148, 50imbi12d 346 . . . . . . . . 9 (𝑦 = 𝐴 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
52 eleq1 2905 . . . . . . . . . . 11 (𝑏 = 0 → (𝑏 ∈ ℤ ↔ 0 ∈ ℤ))
53 breq2 5067 . . . . . . . . . . 11 (𝑏 = 0 → (𝐴𝑏𝐴 ≤ 0))
5452, 533anbi23d 1432 . . . . . . . . . 10 (𝑏 = 0 → ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) ↔ (𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0)))
55 dfsbcq 3778 . . . . . . . . . . 11 (𝑏 = 0 → ([𝑏 / 𝑥]𝜑[0 / 𝑥]𝜑))
5655bibi2d 344 . . . . . . . . . 10 (𝑏 = 0 → (([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
5754, 56imbi12d 346 . . . . . . . . 9 (𝑏 = 0 → (((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))))
5851, 57, 41vtocl2g 3577 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
59583adant3 1126 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
6059pm2.43i 52 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
614, 60mp3an2 1442 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
6261bicomd 224 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
63 0re 10637 . . . . 5 0 ∈ ℝ
64 zre 11979 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65 letric 10734 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 ≤ 0))
6663, 64, 65sylancr 587 . . . 4 (𝐴 ∈ ℤ → (0 ≤ 𝐴𝐴 ≤ 0))
6745, 62, 66mpjaodan 954 . . 3 (𝐴 ∈ ℤ → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
683, 67syl5bbr 286 . 2 (𝐴 ∈ ℤ → (𝜃[𝐴 / 𝑥]𝜑))
69 zindbi.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
7069sbcieg 3814 . 2 (𝐴 ∈ ℤ → ([𝐴 / 𝑥]𝜑𝜏))
7168, 70bitrd 280 1 (𝐴 ∈ ℤ → (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  [wsbc 3776   class class class wbr 5063  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  cle 10670  cz 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976
This theorem is referenced by:  jm2.25  39480
  Copyright terms: Public domain W3C validator