Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zindbi Structured version   Visualization version   GIF version

Theorem zindbi 41313
Description: Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
zindbi.1 (𝑦 ∈ ℤ → (𝜓𝜒))
zindbi.2 (𝑥 = 𝑦 → (𝜑𝜓))
zindbi.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
zindbi.4 (𝑥 = 0 → (𝜑𝜃))
zindbi.5 (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
zindbi (𝐴 ∈ ℤ → (𝜃𝜏))
Distinct variable groups:   𝜑,𝑦   𝑥,𝐴,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)

Proof of Theorem zindbi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 11154 . . . 4 0 ∈ V
2 zindbi.4 . . . 4 (𝑥 = 0 → (𝜑𝜃))
31, 2sbcie 3783 . . 3 ([0 / 𝑥]𝜑𝜃)
4 0z 12515 . . . . 5 0 ∈ ℤ
5 eleq1 2822 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 ∈ ℤ ↔ 0 ∈ ℤ))
6 breq1 5109 . . . . . . . . . 10 (𝑦 = 0 → (𝑦𝑏 ↔ 0 ≤ 𝑏))
75, 63anbi13d 1439 . . . . . . . . 9 (𝑦 = 0 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏)))
8 dfsbcq 3742 . . . . . . . . . 10 (𝑦 = 0 → ([𝑦 / 𝑥]𝜑[0 / 𝑥]𝜑))
98bibi1d 344 . . . . . . . . 9 (𝑦 = 0 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
107, 9imbi12d 345 . . . . . . . 8 (𝑦 = 0 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
11 eleq1 2822 . . . . . . . . . 10 (𝑏 = 𝐴 → (𝑏 ∈ ℤ ↔ 𝐴 ∈ ℤ))
12 breq2 5110 . . . . . . . . . 10 (𝑏 = 𝐴 → (0 ≤ 𝑏 ↔ 0 ≤ 𝐴))
1311, 123anbi23d 1440 . . . . . . . . 9 (𝑏 = 𝐴 → ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
14 dfsbcq 3742 . . . . . . . . . 10 (𝑏 = 𝐴 → ([𝑏 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1514bibi2d 343 . . . . . . . . 9 (𝑏 = 𝐴 → (([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
1613, 15imbi12d 345 . . . . . . . 8 (𝑏 = 𝐴 → (((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))))
17 dfsbcq 3742 . . . . . . . . . 10 (𝑎 = 𝑦 → ([𝑎 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
1817bibi2d 343 . . . . . . . . 9 (𝑎 = 𝑦 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)))
19 dfsbcq 3742 . . . . . . . . . 10 (𝑎 = 𝑏 → ([𝑎 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2019bibi2d 343 . . . . . . . . 9 (𝑎 = 𝑏 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
21 dfsbcq 3742 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → ([𝑎 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
2221bibi2d 343 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
23 biidd 262 . . . . . . . . 9 (𝑦 ∈ ℤ → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
24 vex 3448 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
25 zindbi.2 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜑𝜓))
2624, 25sbcie 3783 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜑𝜓)
27 dfsbcq 3742 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2826, 27bitr3id 285 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜓[𝑏 / 𝑥]𝜑))
29 ovex 7391 . . . . . . . . . . . . . . . 16 (𝑦 + 1) ∈ V
30 zindbi.3 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
3129, 30sbcie 3783 . . . . . . . . . . . . . . 15 ([(𝑦 + 1) / 𝑥]𝜑𝜒)
32 oveq1 7365 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑦 + 1) = (𝑏 + 1))
3332sbceq1d 3745 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([(𝑦 + 1) / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3431, 33bitr3id 285 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜒[(𝑏 + 1) / 𝑥]𝜑))
3528, 34bibi12d 346 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → ((𝜓𝜒) ↔ ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
36 zindbi.1 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝜓𝜒))
3735, 36vtoclga 3533 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
38373ad2ant2 1135 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3938bibi2d 343 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4039biimpd 228 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4118, 20, 22, 20, 23, 40uzind 12600 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
4210, 16, 41vtocl2g 3530 . . . . . . 7 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
43423adant3 1133 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
4443pm2.43i 52 . . . . 5 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
454, 44mp3an1 1449 . . . 4 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
46 eleq1 2822 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∈ ℤ ↔ 𝐴 ∈ ℤ))
47 breq1 5109 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝑏𝐴𝑏))
4846, 473anbi13d 1439 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏)))
49 dfsbcq 3742 . . . . . . . . . . 11 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5049bibi1d 344 . . . . . . . . . 10 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
5148, 50imbi12d 345 . . . . . . . . 9 (𝑦 = 𝐴 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
52 eleq1 2822 . . . . . . . . . . 11 (𝑏 = 0 → (𝑏 ∈ ℤ ↔ 0 ∈ ℤ))
53 breq2 5110 . . . . . . . . . . 11 (𝑏 = 0 → (𝐴𝑏𝐴 ≤ 0))
5452, 533anbi23d 1440 . . . . . . . . . 10 (𝑏 = 0 → ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) ↔ (𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0)))
55 dfsbcq 3742 . . . . . . . . . . 11 (𝑏 = 0 → ([𝑏 / 𝑥]𝜑[0 / 𝑥]𝜑))
5655bibi2d 343 . . . . . . . . . 10 (𝑏 = 0 → (([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
5754, 56imbi12d 345 . . . . . . . . 9 (𝑏 = 0 → (((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))))
5851, 57, 41vtocl2g 3530 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
59583adant3 1133 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
6059pm2.43i 52 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
614, 60mp3an2 1450 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
6261bicomd 222 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
63 0re 11162 . . . . 5 0 ∈ ℝ
64 zre 12508 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65 letric 11260 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 ≤ 0))
6663, 64, 65sylancr 588 . . . 4 (𝐴 ∈ ℤ → (0 ≤ 𝐴𝐴 ≤ 0))
6745, 62, 66mpjaodan 958 . . 3 (𝐴 ∈ ℤ → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
683, 67bitr3id 285 . 2 (𝐴 ∈ ℤ → (𝜃[𝐴 / 𝑥]𝜑))
69 zindbi.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
7069sbcieg 3780 . 2 (𝐴 ∈ ℤ → ([𝐴 / 𝑥]𝜑𝜏))
7168, 70bitrd 279 1 (𝐴 ∈ ℤ → (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  [wsbc 3740   class class class wbr 5106  (class class class)co 7358  cr 11055  0cc0 11056  1c1 11057   + caddc 11059  cle 11195  cz 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505
This theorem is referenced by:  jm2.25  41366
  Copyright terms: Public domain W3C validator