Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zindbi Structured version   Visualization version   GIF version

Theorem zindbi 40768
Description: Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
zindbi.1 (𝑦 ∈ ℤ → (𝜓𝜒))
zindbi.2 (𝑥 = 𝑦 → (𝜑𝜓))
zindbi.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
zindbi.4 (𝑥 = 0 → (𝜑𝜃))
zindbi.5 (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
zindbi (𝐴 ∈ ℤ → (𝜃𝜏))
Distinct variable groups:   𝜑,𝑦   𝑥,𝐴,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)

Proof of Theorem zindbi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 10969 . . . 4 0 ∈ V
2 zindbi.4 . . . 4 (𝑥 = 0 → (𝜑𝜃))
31, 2sbcie 3759 . . 3 ([0 / 𝑥]𝜑𝜃)
4 0z 12330 . . . . 5 0 ∈ ℤ
5 eleq1 2826 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 ∈ ℤ ↔ 0 ∈ ℤ))
6 breq1 5077 . . . . . . . . . 10 (𝑦 = 0 → (𝑦𝑏 ↔ 0 ≤ 𝑏))
75, 63anbi13d 1437 . . . . . . . . 9 (𝑦 = 0 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏)))
8 dfsbcq 3718 . . . . . . . . . 10 (𝑦 = 0 → ([𝑦 / 𝑥]𝜑[0 / 𝑥]𝜑))
98bibi1d 344 . . . . . . . . 9 (𝑦 = 0 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
107, 9imbi12d 345 . . . . . . . 8 (𝑦 = 0 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
11 eleq1 2826 . . . . . . . . . 10 (𝑏 = 𝐴 → (𝑏 ∈ ℤ ↔ 𝐴 ∈ ℤ))
12 breq2 5078 . . . . . . . . . 10 (𝑏 = 𝐴 → (0 ≤ 𝑏 ↔ 0 ≤ 𝐴))
1311, 123anbi23d 1438 . . . . . . . . 9 (𝑏 = 𝐴 → ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
14 dfsbcq 3718 . . . . . . . . . 10 (𝑏 = 𝐴 → ([𝑏 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1514bibi2d 343 . . . . . . . . 9 (𝑏 = 𝐴 → (([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
1613, 15imbi12d 345 . . . . . . . 8 (𝑏 = 𝐴 → (((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))))
17 dfsbcq 3718 . . . . . . . . . 10 (𝑎 = 𝑦 → ([𝑎 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
1817bibi2d 343 . . . . . . . . 9 (𝑎 = 𝑦 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)))
19 dfsbcq 3718 . . . . . . . . . 10 (𝑎 = 𝑏 → ([𝑎 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2019bibi2d 343 . . . . . . . . 9 (𝑎 = 𝑏 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
21 dfsbcq 3718 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → ([𝑎 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
2221bibi2d 343 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
23 biidd 261 . . . . . . . . 9 (𝑦 ∈ ℤ → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
24 vex 3436 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
25 zindbi.2 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜑𝜓))
2624, 25sbcie 3759 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜑𝜓)
27 dfsbcq 3718 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2826, 27bitr3id 285 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜓[𝑏 / 𝑥]𝜑))
29 ovex 7308 . . . . . . . . . . . . . . . 16 (𝑦 + 1) ∈ V
30 zindbi.3 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
3129, 30sbcie 3759 . . . . . . . . . . . . . . 15 ([(𝑦 + 1) / 𝑥]𝜑𝜒)
32 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑦 + 1) = (𝑏 + 1))
3332sbceq1d 3721 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([(𝑦 + 1) / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3431, 33bitr3id 285 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜒[(𝑏 + 1) / 𝑥]𝜑))
3528, 34bibi12d 346 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → ((𝜓𝜒) ↔ ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
36 zindbi.1 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝜓𝜒))
3735, 36vtoclga 3513 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
38373ad2ant2 1133 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3938bibi2d 343 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4039biimpd 228 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4118, 20, 22, 20, 23, 40uzind 12412 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
4210, 16, 41vtocl2g 3510 . . . . . . 7 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
43423adant3 1131 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
4443pm2.43i 52 . . . . 5 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
454, 44mp3an1 1447 . . . 4 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
46 eleq1 2826 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∈ ℤ ↔ 𝐴 ∈ ℤ))
47 breq1 5077 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝑏𝐴𝑏))
4846, 473anbi13d 1437 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏)))
49 dfsbcq 3718 . . . . . . . . . . 11 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5049bibi1d 344 . . . . . . . . . 10 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
5148, 50imbi12d 345 . . . . . . . . 9 (𝑦 = 𝐴 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
52 eleq1 2826 . . . . . . . . . . 11 (𝑏 = 0 → (𝑏 ∈ ℤ ↔ 0 ∈ ℤ))
53 breq2 5078 . . . . . . . . . . 11 (𝑏 = 0 → (𝐴𝑏𝐴 ≤ 0))
5452, 533anbi23d 1438 . . . . . . . . . 10 (𝑏 = 0 → ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) ↔ (𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0)))
55 dfsbcq 3718 . . . . . . . . . . 11 (𝑏 = 0 → ([𝑏 / 𝑥]𝜑[0 / 𝑥]𝜑))
5655bibi2d 343 . . . . . . . . . 10 (𝑏 = 0 → (([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
5754, 56imbi12d 345 . . . . . . . . 9 (𝑏 = 0 → (((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))))
5851, 57, 41vtocl2g 3510 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
59583adant3 1131 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
6059pm2.43i 52 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
614, 60mp3an2 1448 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
6261bicomd 222 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
63 0re 10977 . . . . 5 0 ∈ ℝ
64 zre 12323 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65 letric 11075 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 ≤ 0))
6663, 64, 65sylancr 587 . . . 4 (𝐴 ∈ ℤ → (0 ≤ 𝐴𝐴 ≤ 0))
6745, 62, 66mpjaodan 956 . . 3 (𝐴 ∈ ℤ → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
683, 67bitr3id 285 . 2 (𝐴 ∈ ℤ → (𝜃[𝐴 / 𝑥]𝜑))
69 zindbi.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
7069sbcieg 3756 . 2 (𝐴 ∈ ℤ → ([𝐴 / 𝑥]𝜑𝜏))
7168, 70bitrd 278 1 (𝐴 ∈ ℤ → (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  [wsbc 3716   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320
This theorem is referenced by:  jm2.25  40821
  Copyright terms: Public domain W3C validator