![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpht2 | Structured version Visualization version GIF version |
Description: Any two paths in a simply connected space with the same start and end point are path-homotopic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
Ref | Expression |
---|---|
sconnpht2.1 | ⊢ (𝜑 → 𝐽 ∈ SConn) |
sconnpht2.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
sconnpht2.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
sconnpht2.4 | ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) |
sconnpht2.5 | ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) |
Ref | Expression |
---|---|
sconnpht2 | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sconnpht2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ SConn) | |
2 | sconnpht2.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
3 | sconnpht2.3 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
4 | eqid 2778 | . . . . . . . 8 ⊢ (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) | |
5 | 4 | pcorevcl 23236 | . . . . . . 7 ⊢ (𝐺 ∈ (II Cn 𝐽) → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0))) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0))) |
7 | 6 | simp1d 1133 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽)) |
8 | sconnpht2.5 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) | |
9 | 6 | simp2d 1134 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1)) |
10 | 8, 9 | eqtr4d 2817 | . . . . 5 ⊢ (𝜑 → (𝐹‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0)) |
11 | 2, 7, 10 | pcocn 23228 | . . . 4 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽)) |
12 | 2, 7 | pco0 23225 | . . . . 5 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = (𝐹‘0)) |
13 | 2, 7 | pco1 23226 | . . . . . 6 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1)) |
14 | sconnpht2.4 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) | |
15 | 6 | simp3d 1135 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0)) |
16 | 14, 15 | eqtr4d 2817 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1)) |
17 | 13, 16 | eqtr4d 2817 | . . . . 5 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = (𝐹‘0)) |
18 | 12, 17 | eqtr4d 2817 | . . . 4 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1)) |
19 | sconnpht 31814 | . . . 4 ⊢ ((𝐽 ∈ SConn ∧ (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1)) → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)})) | |
20 | 1, 11, 18, 19 | syl3anc 1439 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)})) |
21 | 12 | sneqd 4410 | . . . 4 ⊢ (𝜑 → {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)} = {(𝐹‘0)}) |
22 | 21 | xpeq2d 5387 | . . 3 ⊢ (𝜑 → ((0[,]1) × {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}) = ((0[,]1) × {(𝐹‘0)})) |
23 | 20, 22 | breqtrd 4914 | . 2 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
24 | eqid 2778 | . . 3 ⊢ ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)}) | |
25 | 4, 24, 2, 3, 14, 8 | pcophtb 23240 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)}) ↔ 𝐹( ≃ph‘𝐽)𝐺)) |
26 | 23, 25 | mpbid 224 | 1 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {csn 4398 class class class wbr 4888 ↦ cmpt 4967 × cxp 5355 ‘cfv 6137 (class class class)co 6924 0cc0 10274 1c1 10275 − cmin 10608 [,]cicc 12494 Cn ccn 21440 IIcii 23090 ≃phcphtpc 23180 *𝑝cpco 23211 SConncsconn 31805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-ioo 12495 df-icc 12498 df-fz 12648 df-fzo 12789 df-seq 13124 df-exp 13183 df-hash 13440 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-sca 16358 df-vsca 16359 df-ip 16360 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-hom 16366 df-cco 16367 df-rest 16473 df-topn 16474 df-0g 16492 df-gsum 16493 df-topgen 16494 df-pt 16495 df-prds 16498 df-xrs 16552 df-qtop 16557 df-imas 16558 df-xps 16560 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-mulg 17932 df-cntz 18137 df-cmn 18585 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-cnfld 20147 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cld 21235 df-cn 21443 df-cnp 21444 df-tx 21778 df-hmeo 21971 df-xms 22537 df-ms 22538 df-tms 22539 df-ii 23092 df-htpy 23181 df-phtpy 23182 df-phtpc 23203 df-pco 23216 df-sconn 31807 |
This theorem is referenced by: cvmlift3lem1 31904 |
Copyright terms: Public domain | W3C validator |