Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpht2 Structured version   Visualization version   GIF version

Theorem sconnpht2 31823
Description: Any two paths in a simply connected space with the same start and end point are path-homotopic. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
sconnpht2.1 (𝜑𝐽 ∈ SConn)
sconnpht2.2 (𝜑𝐹 ∈ (II Cn 𝐽))
sconnpht2.3 (𝜑𝐺 ∈ (II Cn 𝐽))
sconnpht2.4 (𝜑 → (𝐹‘0) = (𝐺‘0))
sconnpht2.5 (𝜑 → (𝐹‘1) = (𝐺‘1))
Assertion
Ref Expression
sconnpht2 (𝜑𝐹( ≃ph𝐽)𝐺)

Proof of Theorem sconnpht2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sconnpht2.1 . . . 4 (𝜑𝐽 ∈ SConn)
2 sconnpht2.2 . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
3 sconnpht2.3 . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
4 eqid 2778 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
54pcorevcl 23236 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0)))
63, 5syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0)))
76simp1d 1133 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽))
8 sconnpht2.5 . . . . . 6 (𝜑 → (𝐹‘1) = (𝐺‘1))
96simp2d 1134 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1))
108, 9eqtr4d 2817 . . . . 5 (𝜑 → (𝐹‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0))
112, 7, 10pcocn 23228 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽))
122, 7pco0 23225 . . . . 5 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = (𝐹‘0))
132, 7pco1 23226 . . . . . 6 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1))
14 sconnpht2.4 . . . . . . 7 (𝜑 → (𝐹‘0) = (𝐺‘0))
156simp3d 1135 . . . . . . 7 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0))
1614, 15eqtr4d 2817 . . . . . 6 (𝜑 → (𝐹‘0) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1))
1713, 16eqtr4d 2817 . . . . 5 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = (𝐹‘0))
1812, 17eqtr4d 2817 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1))
19 sconnpht 31814 . . . 4 ((𝐽 ∈ SConn ∧ (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1)) → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}))
201, 11, 18, 19syl3anc 1439 . . 3 (𝜑 → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}))
2112sneqd 4410 . . . 4 (𝜑 → {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)} = {(𝐹‘0)})
2221xpeq2d 5387 . . 3 (𝜑 → ((0[,]1) × {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}) = ((0[,]1) × {(𝐹‘0)}))
2320, 22breqtrd 4914 . 2 (𝜑 → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
24 eqid 2778 . . 3 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
254, 24, 2, 3, 14, 8pcophtb 23240 . 2 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}) ↔ 𝐹( ≃ph𝐽)𝐺))
2623, 25mpbid 224 1 (𝜑𝐹( ≃ph𝐽)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1601  wcel 2107  {csn 4398   class class class wbr 4888  cmpt 4967   × cxp 5355  cfv 6137  (class class class)co 6924  0cc0 10274  1c1 10275  cmin 10608  [,]cicc 12494   Cn ccn 21440  IIcii 23090  phcphtpc 23180  *𝑝cpco 23211  SConncsconn 31805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ioo 12495  df-icc 12498  df-fz 12648  df-fzo 12789  df-seq 13124  df-exp 13183  df-hash 13440  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-pt 16495  df-prds 16498  df-xrs 16552  df-qtop 16557  df-imas 16558  df-xps 16560  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-mulg 17932  df-cntz 18137  df-cmn 18585  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-cn 21443  df-cnp 21444  df-tx 21778  df-hmeo 21971  df-xms 22537  df-ms 22538  df-tms 22539  df-ii 23092  df-htpy 23181  df-phtpy 23182  df-phtpc 23203  df-pco 23216  df-sconn 31807
This theorem is referenced by:  cvmlift3lem1  31904
  Copyright terms: Public domain W3C validator