| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpht2 | Structured version Visualization version GIF version | ||
| Description: Any two paths in a simply connected space with the same start and end point are path-homotopic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| Ref | Expression |
|---|---|
| sconnpht2.1 | ⊢ (𝜑 → 𝐽 ∈ SConn) |
| sconnpht2.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| sconnpht2.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| sconnpht2.4 | ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) |
| sconnpht2.5 | ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) |
| Ref | Expression |
|---|---|
| sconnpht2 | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sconnpht2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ SConn) | |
| 2 | sconnpht2.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 3 | sconnpht2.3 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) | |
| 5 | 4 | pcorevcl 24923 | . . . . . . 7 ⊢ (𝐺 ∈ (II Cn 𝐽) → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0))) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0))) |
| 7 | 6 | simp1d 1142 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽)) |
| 8 | sconnpht2.5 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) | |
| 9 | 6 | simp2d 1143 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1)) |
| 10 | 8, 9 | eqtr4d 2767 | . . . . 5 ⊢ (𝜑 → (𝐹‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0)) |
| 11 | 2, 7, 10 | pcocn 24915 | . . . 4 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽)) |
| 12 | 2, 7 | pco0 24912 | . . . . 5 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = (𝐹‘0)) |
| 13 | 2, 7 | pco1 24913 | . . . . . 6 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1)) |
| 14 | sconnpht2.4 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) | |
| 15 | 6 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0)) |
| 16 | 14, 15 | eqtr4d 2767 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1)) |
| 17 | 13, 16 | eqtr4d 2767 | . . . . 5 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = (𝐹‘0)) |
| 18 | 12, 17 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1)) |
| 19 | sconnpht 35212 | . . . 4 ⊢ ((𝐽 ∈ SConn ∧ (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1)) → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)})) | |
| 20 | 1, 11, 18, 19 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)})) |
| 21 | 12 | sneqd 4589 | . . . 4 ⊢ (𝜑 → {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)} = {(𝐹‘0)}) |
| 22 | 21 | xpeq2d 5649 | . . 3 ⊢ (𝜑 → ((0[,]1) × {((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}) = ((0[,]1) × {(𝐹‘0)})) |
| 23 | 20, 22 | breqtrd 5118 | . 2 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
| 24 | eqid 2729 | . . 3 ⊢ ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)}) | |
| 25 | 4, 24, 2, 3, 14, 8 | pcophtb 24927 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)}) ↔ 𝐹( ≃ph‘𝐽)𝐺)) |
| 26 | 23, 25 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4577 class class class wbr 5092 ↦ cmpt 5173 × cxp 5617 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 − cmin 11347 [,]cicc 13251 Cn ccn 23109 IIcii 24766 ≃phcphtpc 24866 *𝑝cpco 24898 SConncsconn 35203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-cn 23112 df-cnp 23113 df-tx 23447 df-hmeo 23640 df-xms 24206 df-ms 24207 df-tms 24208 df-ii 24768 df-htpy 24867 df-phtpy 24868 df-phtpc 24889 df-pco 24903 df-sconn 35205 |
| This theorem is referenced by: cvmlift3lem1 35302 |
| Copyright terms: Public domain | W3C validator |