MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3lr Structured version   Visualization version   GIF version

Theorem simp3lr 1246
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3lr ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)

Proof of Theorem simp3lr
StepHypRef Expression
1 simplr 769 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant3 1136 1 ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  f1oiso2  7372  omeu  8623  ntrivcvgmul  15938  tsmsxp  24163  tgqioo  24821  ovolunlem2  25533  plyadd  26256  plymul  26257  coeeu  26264  nosupbnd1lem2  27754  noinfbnd1lem2  27769  tghilberti2  28646  btwnconn1lem2  36089  btwnconn1lem3  36090  btwnconn1lem4  36091  athgt  39458  2llnjN  39569  4atlem12b  39613  lncmp  39785  cdlema2N  39794  cdleme21ct  40331  cdleme24  40354  cdleme27a  40369  cdleme28  40375  cdleme42b  40480  cdlemf  40565  dihlsscpre  41236  dihord4  41260  dihord5apre  41264  pellex  42846  jm2.27  43020
  Copyright terms: Public domain W3C validator