MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3lr Structured version   Visualization version   GIF version

Theorem simp3lr 1246
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3lr ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)

Proof of Theorem simp3lr
StepHypRef Expression
1 simplr 768 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant3 1135 1 ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  f1oiso2  7327  omeu  8549  ntrivcvgmul  15868  tsmsxp  24042  tgqioo  24688  ovolunlem2  25399  plyadd  26122  plymul  26123  coeeu  26130  nosupbnd1lem2  27621  noinfbnd1lem2  27636  tghilberti2  28565  btwnconn1lem2  36076  btwnconn1lem3  36077  btwnconn1lem4  36078  athgt  39450  2llnjN  39561  4atlem12b  39605  lncmp  39777  cdlema2N  39786  cdleme21ct  40323  cdleme24  40346  cdleme27a  40361  cdleme28  40367  cdleme42b  40472  cdlemf  40557  dihlsscpre  41228  dihord4  41252  dihord5apre  41256  pellex  42823  jm2.27  42997
  Copyright terms: Public domain W3C validator