MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3lr Structured version   Visualization version   GIF version

Theorem simp3lr 1243
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3lr ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)

Proof of Theorem simp3lr
StepHypRef Expression
1 simplr 765 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant3 1133 1 ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  f1oiso2  7203  omeu  8378  ntrivcvgmul  15542  tsmsxp  23214  tgqioo  23869  ovolunlem2  24567  plyadd  25283  plymul  25284  coeeu  25291  tghilberti2  26903  nosupbnd1lem2  33839  noinfbnd1lem2  33854  btwnconn1lem2  34317  btwnconn1lem3  34318  btwnconn1lem4  34319  athgt  37397  2llnjN  37508  4atlem12b  37552  lncmp  37724  cdlema2N  37733  cdleme21ct  38270  cdleme24  38293  cdleme27a  38308  cdleme28  38314  cdleme42b  38419  cdlemf  38504  dihlsscpre  39175  dihord4  39199  dihord5apre  39203  pellex  40573  jm2.27  40746
  Copyright terms: Public domain W3C validator