MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3lr Structured version   Visualization version   GIF version

Theorem simp3lr 1246
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3lr ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)

Proof of Theorem simp3lr
StepHypRef Expression
1 simplr 768 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant3 1135 1 ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  f1oiso2  7330  omeu  8552  ntrivcvgmul  15875  tsmsxp  24049  tgqioo  24695  ovolunlem2  25406  plyadd  26129  plymul  26130  coeeu  26137  nosupbnd1lem2  27628  noinfbnd1lem2  27643  tghilberti2  28572  btwnconn1lem2  36083  btwnconn1lem3  36084  btwnconn1lem4  36085  athgt  39457  2llnjN  39568  4atlem12b  39612  lncmp  39784  cdlema2N  39793  cdleme21ct  40330  cdleme24  40353  cdleme27a  40368  cdleme28  40374  cdleme42b  40479  cdlemf  40564  dihlsscpre  41235  dihord4  41259  dihord5apre  41263  pellex  42830  jm2.27  43004
  Copyright terms: Public domain W3C validator