![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: f1oiso2 7388 omeu 8641 ntrivcvgmul 15950 tsmsxp 24184 tgqioo 24841 ovolunlem2 25552 plyadd 26276 plymul 26277 coeeu 26284 nosupbnd1lem2 27772 noinfbnd1lem2 27787 tghilberti2 28664 btwnconn1lem2 36052 btwnconn1lem3 36053 btwnconn1lem4 36054 athgt 39413 2llnjN 39524 4atlem12b 39568 lncmp 39740 cdlema2N 39749 cdleme21ct 40286 cdleme24 40309 cdleme27a 40324 cdleme28 40330 cdleme42b 40435 cdlemf 40520 dihlsscpre 41191 dihord4 41215 dihord5apre 41219 pellex 42791 jm2.27 42965 |
Copyright terms: Public domain | W3C validator |