| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1oiso2 7327 omeu 8549 ntrivcvgmul 15868 tsmsxp 24042 tgqioo 24688 ovolunlem2 25399 plyadd 26122 plymul 26123 coeeu 26130 nosupbnd1lem2 27621 noinfbnd1lem2 27636 tghilberti2 28565 btwnconn1lem2 36076 btwnconn1lem3 36077 btwnconn1lem4 36078 athgt 39450 2llnjN 39561 4atlem12b 39605 lncmp 39777 cdlema2N 39786 cdleme21ct 40323 cdleme24 40346 cdleme27a 40361 cdleme28 40367 cdleme42b 40472 cdlemf 40557 dihlsscpre 41228 dihord4 41252 dihord5apre 41256 pellex 42823 jm2.27 42997 |
| Copyright terms: Public domain | W3C validator |