| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1oiso2 7293 omeu 8510 ntrivcvgmul 15827 tsmsxp 24058 tgqioo 24704 ovolunlem2 25415 plyadd 26138 plymul 26139 coeeu 26146 nosupbnd1lem2 27637 noinfbnd1lem2 27652 tghilberti2 28601 btwnconn1lem2 36061 btwnconn1lem3 36062 btwnconn1lem4 36063 athgt 39435 2llnjN 39546 4atlem12b 39590 lncmp 39762 cdlema2N 39771 cdleme21ct 40308 cdleme24 40331 cdleme27a 40346 cdleme28 40352 cdleme42b 40457 cdlemf 40542 dihlsscpre 41213 dihord4 41237 dihord5apre 41241 pellex 42808 jm2.27 42981 |
| Copyright terms: Public domain | W3C validator |