Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: f1oiso2 7203 omeu 8378 ntrivcvgmul 15542 tsmsxp 23214 tgqioo 23869 ovolunlem2 24567 plyadd 25283 plymul 25284 coeeu 25291 tghilberti2 26903 nosupbnd1lem2 33839 noinfbnd1lem2 33854 btwnconn1lem2 34317 btwnconn1lem3 34318 btwnconn1lem4 34319 athgt 37397 2llnjN 37508 4atlem12b 37552 lncmp 37724 cdlema2N 37733 cdleme21ct 38270 cdleme24 38293 cdleme27a 38308 cdleme28 38314 cdleme42b 38419 cdlemf 38504 dihlsscpre 39175 dihord4 39199 dihord5apre 39203 pellex 40573 jm2.27 40746 |
Copyright terms: Public domain | W3C validator |