MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3lr Structured version   Visualization version   GIF version

Theorem simp3lr 1246
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3lr ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)

Proof of Theorem simp3lr
StepHypRef Expression
1 simplr 768 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant3 1135 1 ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  f1oiso2  7292  omeu  8506  ntrivcvgmul  15811  tsmsxp  24071  tgqioo  24716  ovolunlem2  25427  plyadd  26150  plymul  26151  coeeu  26158  nosupbnd1lem2  27649  noinfbnd1lem2  27664  tghilberti2  28617  btwnconn1lem2  36153  btwnconn1lem3  36154  btwnconn1lem4  36155  athgt  39575  2llnjN  39686  4atlem12b  39730  lncmp  39902  cdlema2N  39911  cdleme21ct  40448  cdleme24  40471  cdleme27a  40486  cdleme28  40492  cdleme42b  40597  cdlemf  40682  dihlsscpre  41353  dihord4  41377  dihord5apre  41381  pellex  42952  jm2.27  43125
  Copyright terms: Public domain W3C validator