| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1oiso2 7286 omeu 8500 ntrivcvgmul 15806 tsmsxp 24068 tgqioo 24713 ovolunlem2 25424 plyadd 26147 plymul 26148 coeeu 26155 nosupbnd1lem2 27646 noinfbnd1lem2 27661 tghilberti2 28614 btwnconn1lem2 36121 btwnconn1lem3 36122 btwnconn1lem4 36123 athgt 39494 2llnjN 39605 4atlem12b 39649 lncmp 39821 cdlema2N 39830 cdleme21ct 40367 cdleme24 40390 cdleme27a 40405 cdleme28 40411 cdleme42b 40516 cdlemf 40601 dihlsscpre 41272 dihord4 41296 dihord5apre 41300 pellex 42867 jm2.27 43040 |
| Copyright terms: Public domain | W3C validator |