| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1oiso2 7330 omeu 8552 ntrivcvgmul 15875 tsmsxp 24049 tgqioo 24695 ovolunlem2 25406 plyadd 26129 plymul 26130 coeeu 26137 nosupbnd1lem2 27628 noinfbnd1lem2 27643 tghilberti2 28572 btwnconn1lem2 36083 btwnconn1lem3 36084 btwnconn1lem4 36085 athgt 39457 2llnjN 39568 4atlem12b 39612 lncmp 39784 cdlema2N 39793 cdleme21ct 40330 cdleme24 40353 cdleme27a 40368 cdleme28 40374 cdleme42b 40479 cdlemf 40564 dihlsscpre 41235 dihord4 41259 dihord5apre 41263 pellex 42830 jm2.27 43004 |
| Copyright terms: Public domain | W3C validator |