| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1oiso2 7292 omeu 8506 ntrivcvgmul 15811 tsmsxp 24071 tgqioo 24716 ovolunlem2 25427 plyadd 26150 plymul 26151 coeeu 26158 nosupbnd1lem2 27649 noinfbnd1lem2 27664 tghilberti2 28617 btwnconn1lem2 36153 btwnconn1lem3 36154 btwnconn1lem4 36155 athgt 39575 2llnjN 39686 4atlem12b 39730 lncmp 39902 cdlema2N 39911 cdleme21ct 40448 cdleme24 40471 cdleme27a 40486 cdleme28 40492 cdleme42b 40597 cdlemf 40682 dihlsscpre 41353 dihord4 41377 dihord5apre 41381 pellex 42952 jm2.27 43125 |
| Copyright terms: Public domain | W3C validator |