MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3lr Structured version   Visualization version   GIF version

Theorem simp3lr 1245
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3lr ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)

Proof of Theorem simp3lr
StepHypRef Expression
1 simplr 768 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
213ad2ant3 1135 1 ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  f1oiso2  7388  omeu  8641  ntrivcvgmul  15950  tsmsxp  24184  tgqioo  24841  ovolunlem2  25552  plyadd  26276  plymul  26277  coeeu  26284  nosupbnd1lem2  27772  noinfbnd1lem2  27787  tghilberti2  28664  btwnconn1lem2  36052  btwnconn1lem3  36053  btwnconn1lem4  36054  athgt  39413  2llnjN  39524  4atlem12b  39568  lncmp  39740  cdlema2N  39749  cdleme21ct  40286  cdleme24  40309  cdleme27a  40324  cdleme28  40330  cdleme42b  40435  cdlemf  40520  dihlsscpre  41191  dihord4  41215  dihord5apre  41219  pellex  42791  jm2.27  42965
  Copyright terms: Public domain W3C validator