| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1oiso2 7345 omeu 8597 ntrivcvgmul 15918 tsmsxp 24093 tgqioo 24739 ovolunlem2 25451 plyadd 26174 plymul 26175 coeeu 26182 nosupbnd1lem2 27673 noinfbnd1lem2 27688 tghilberti2 28617 btwnconn1lem2 36106 btwnconn1lem3 36107 btwnconn1lem4 36108 athgt 39475 2llnjN 39586 4atlem12b 39630 lncmp 39802 cdlema2N 39811 cdleme21ct 40348 cdleme24 40371 cdleme27a 40386 cdleme28 40392 cdleme42b 40497 cdlemf 40582 dihlsscpre 41253 dihord4 41277 dihord5apre 41281 pellex 42858 jm2.27 43032 |
| Copyright terms: Public domain | W3C validator |