Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: f1oiso2 7273 omeu 8479 ntrivcvgmul 15705 tsmsxp 23404 tgqioo 24061 ovolunlem2 24760 plyadd 25476 plymul 25477 coeeu 25484 nosupbnd1lem2 26955 noinfbnd1lem2 26970 tghilberti2 27201 btwnconn1lem2 34481 btwnconn1lem3 34482 btwnconn1lem4 34483 athgt 37717 2llnjN 37828 4atlem12b 37872 lncmp 38044 cdlema2N 38053 cdleme21ct 38590 cdleme24 38613 cdleme27a 38628 cdleme28 38634 cdleme42b 38739 cdlemf 38824 dihlsscpre 39495 dihord4 39519 dihord5apre 39523 pellex 40907 jm2.27 41081 |
Copyright terms: Public domain | W3C validator |