MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyadd Structured version   Visualization version   GIF version

Theorem plyadd 24814
Description: The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyadd (𝜑 → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑆,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦

Proof of Theorem plyadd
Dummy variables 𝑘 𝑚 𝑛 𝑧 𝑎 𝑏 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 24793 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))))
32simprbi 500 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
41, 3syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
5 plyadd.2 . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
6 elply2 24793 . . . 4 (𝐺 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
76simprbi 500 . . 3 (𝐺 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
85, 7syl 17 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
9 reeanv 3320 . . 3 (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
10 reeanv 3320 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
11 simp1l 1194 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝜑)
1211, 1syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
1311, 5syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 ∈ (Poly‘𝑆))
14 plyadd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1511, 14sylan 583 . . . . . . . 8 ((((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
16 simp1rl 1235 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
17 simp1rr 1236 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
18 simp2l 1196 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))
19 simp2r 1197 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0))
20 simp3ll 1241 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑚 + 1))) = {0})
21 simp3rl 1243 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑛 + 1))) = {0})
22 simp3lr 1242 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))
23 oveq1 7142 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2423oveq2d 7151 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2524sumeq2sdv 15053 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)))
26 fveq2 6645 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
27 oveq2 7143 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2826, 27oveq12d 7153 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2928cbvsumv 15045 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))
3025, 29eqtrdi 2849 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3130cbvmptv 5133 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3222, 31eqtrdi 2849 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))))
33 simp3rr 1244 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
3423oveq2d 7151 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3534sumeq2sdv 15053 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)))
36 fveq2 6645 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3736, 27oveq12d 7153 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
3837cbvsumv 15045 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))
3935, 38eqtrdi 2849 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4039cbvmptv 5133 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4133, 40eqtrdi 2849 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))))
4212, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41plyaddlem 24812 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
43423expia 1118 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
4443rexlimdvva 3253 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
4510, 44syl5bir 246 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
4645rexlimdvva 3253 . . 3 (𝜑 → (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
479, 46syl5bir 246 . 2 (𝜑 → ((∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
484, 8, 47mp2and 698 1 (𝜑 → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  cun 3879  wss 3881  {csn 4525  cmpt 5110  cima 5522  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  0cn0 11885  cuz 12231  ...cfz 12885  cexp 13425  Σcsu 15034  Polycply 24781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-ply 24785
This theorem is referenced by:  plysub  24816  plyaddcl  24817  plyco  24838  plydivlem4  24892  iaa  24921  rngunsnply  40117
  Copyright terms: Public domain W3C validator