MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyadd Structured version   Visualization version   GIF version

Theorem plyadd 25283
Description: The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyadd (𝜑 → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑆,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦

Proof of Theorem plyadd
Dummy variables 𝑘 𝑚 𝑛 𝑧 𝑎 𝑏 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 25262 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))))
32simprbi 496 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
41, 3syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
5 plyadd.2 . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
6 elply2 25262 . . . 4 (𝐺 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
76simprbi 496 . . 3 (𝐺 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
85, 7syl 17 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
9 reeanv 3292 . . 3 (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
10 reeanv 3292 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
11 simp1l 1195 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝜑)
1211, 1syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
1311, 5syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 ∈ (Poly‘𝑆))
14 plyadd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1511, 14sylan 579 . . . . . . . 8 ((((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
16 simp1rl 1236 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
17 simp1rr 1237 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
18 simp2l 1197 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))
19 simp2r 1198 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0))
20 simp3ll 1242 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑚 + 1))) = {0})
21 simp3rl 1244 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑛 + 1))) = {0})
22 simp3lr 1243 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))
23 oveq1 7262 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2423oveq2d 7271 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2524sumeq2sdv 15344 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)))
26 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
27 oveq2 7263 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2826, 27oveq12d 7273 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2928cbvsumv 15336 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))
3025, 29eqtrdi 2795 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3130cbvmptv 5183 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3222, 31eqtrdi 2795 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))))
33 simp3rr 1245 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
3423oveq2d 7271 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3534sumeq2sdv 15344 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)))
36 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3736, 27oveq12d 7273 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
3837cbvsumv 15336 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))
3935, 38eqtrdi 2795 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4039cbvmptv 5183 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4133, 40eqtrdi 2795 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))))
4212, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41plyaddlem 25281 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
43423expia 1119 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
4443rexlimdvva 3222 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
4510, 44syl5bir 242 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
4645rexlimdvva 3222 . . 3 (𝜑 → (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
479, 46syl5bir 242 . 2 (𝜑 → ((∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f + 𝐺) ∈ (Poly‘𝑆)))
484, 8, 47mp2and 695 1 (𝜑 → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cun 3881  wss 3883  {csn 4558  cmpt 5153  cima 5583  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325  Polycply 25250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-ply 25254
This theorem is referenced by:  plysub  25285  plyaddcl  25286  plyco  25307  plydivlem4  25361  iaa  25390  rngunsnply  40914
  Copyright terms: Public domain W3C validator