MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyadd Structured version   Visualization version   GIF version

Theorem plyadd 26164
Description: The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (๐œ‘ โ†’ ๐น โˆˆ (Polyโ€˜๐‘†))
plyadd.2 (๐œ‘ โ†’ ๐บ โˆˆ (Polyโ€˜๐‘†))
plyadd.3 ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐‘† โˆง ๐‘ฆ โˆˆ ๐‘†)) โ†’ (๐‘ฅ + ๐‘ฆ) โˆˆ ๐‘†)
Assertion
Ref Expression
plyadd (๐œ‘ โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†))
Distinct variable groups:   ๐‘ฅ,๐‘ฆ,๐น   ๐‘ฅ,๐‘†,๐‘ฆ   ๐‘ฅ,๐บ,๐‘ฆ   ๐œ‘,๐‘ฅ,๐‘ฆ

Proof of Theorem plyadd
Dummy variables ๐‘˜ ๐‘š ๐‘› ๐‘ง ๐‘Ž ๐‘ ๐‘— ๐‘ค are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3 (๐œ‘ โ†’ ๐น โˆˆ (Polyโ€˜๐‘†))
2 elply2 26143 . . . 4 (๐น โˆˆ (Polyโ€˜๐‘†) โ†” (๐‘† โІ โ„‚ โˆง โˆƒ๐‘š โˆˆ โ„•0 โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
32simprbi 496 . . 3 (๐น โˆˆ (Polyโ€˜๐‘†) โ†’ โˆƒ๐‘š โˆˆ โ„•0 โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))
41, 3syl 17 . 2 (๐œ‘ โ†’ โˆƒ๐‘š โˆˆ โ„•0 โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))
5 plyadd.2 . . 3 (๐œ‘ โ†’ ๐บ โˆˆ (Polyโ€˜๐‘†))
6 elply2 26143 . . . 4 (๐บ โˆˆ (Polyโ€˜๐‘†) โ†” (๐‘† โІ โ„‚ โˆง โˆƒ๐‘› โˆˆ โ„•0 โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
76simprbi 496 . . 3 (๐บ โˆˆ (Polyโ€˜๐‘†) โ†’ โˆƒ๐‘› โˆˆ โ„•0 โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))
85, 7syl 17 . 2 (๐œ‘ โ†’ โˆƒ๐‘› โˆˆ โ„•0 โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))
9 reeanv 3223 . . 3 (โˆƒ๐‘š โˆˆ โ„•0 โˆƒ๐‘› โˆˆ โ„•0 (โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โ†” (โˆƒ๐‘š โˆˆ โ„•0 โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง โˆƒ๐‘› โˆˆ โ„•0 โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
10 reeanv 3223 . . . . 5 (โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)(((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โ†” (โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
11 simp1l 1195 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐œ‘)
1211, 1syl 17 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐น โˆˆ (Polyโ€˜๐‘†))
1311, 5syl 17 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐บ โˆˆ (Polyโ€˜๐‘†))
14 plyadd.3 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐‘† โˆง ๐‘ฆ โˆˆ ๐‘†)) โ†’ (๐‘ฅ + ๐‘ฆ) โˆˆ ๐‘†)
1511, 14sylan 579 . . . . . . . 8 ((((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โˆง (๐‘ฅ โˆˆ ๐‘† โˆง ๐‘ฆ โˆˆ ๐‘†)) โ†’ (๐‘ฅ + ๐‘ฆ) โˆˆ ๐‘†)
16 simp1rl 1236 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐‘š โˆˆ โ„•0)
17 simp1rr 1237 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐‘› โˆˆ โ„•0)
18 simp2l 1197 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0))
19 simp2r 1198 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0))
20 simp3ll 1242 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ (๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0})
21 simp3rl 1244 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ (๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0})
22 simp3lr 1243 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))
23 oveq1 7427 . . . . . . . . . . . . 13 (๐‘ง = ๐‘ค โ†’ (๐‘งโ†‘๐‘˜) = (๐‘คโ†‘๐‘˜))
2423oveq2d 7436 . . . . . . . . . . . 12 (๐‘ง = ๐‘ค โ†’ ((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)) = ((๐‘Žโ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)))
2524sumeq2sdv 15683 . . . . . . . . . . 11 (๐‘ง = ๐‘ค โ†’ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)) = ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)))
26 fveq2 6897 . . . . . . . . . . . . 13 (๐‘˜ = ๐‘— โ†’ (๐‘Žโ€˜๐‘˜) = (๐‘Žโ€˜๐‘—))
27 oveq2 7428 . . . . . . . . . . . . 13 (๐‘˜ = ๐‘— โ†’ (๐‘คโ†‘๐‘˜) = (๐‘คโ†‘๐‘—))
2826, 27oveq12d 7438 . . . . . . . . . . . 12 (๐‘˜ = ๐‘— โ†’ ((๐‘Žโ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)) = ((๐‘Žโ€˜๐‘—) ยท (๐‘คโ†‘๐‘—)))
2928cbvsumv 15675 . . . . . . . . . . 11 ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)) = ฮฃ๐‘— โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘—) ยท (๐‘คโ†‘๐‘—))
3025, 29eqtrdi 2784 . . . . . . . . . 10 (๐‘ง = ๐‘ค โ†’ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)) = ฮฃ๐‘— โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘—) ยท (๐‘คโ†‘๐‘—)))
3130cbvmptv 5261 . . . . . . . . 9 (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))) = (๐‘ค โˆˆ โ„‚ โ†ฆ ฮฃ๐‘— โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘—) ยท (๐‘คโ†‘๐‘—)))
3222, 31eqtrdi 2784 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐น = (๐‘ค โˆˆ โ„‚ โ†ฆ ฮฃ๐‘— โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘—) ยท (๐‘คโ†‘๐‘—))))
33 simp3rr 1245 . . . . . . . . 9 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))
3423oveq2d 7436 . . . . . . . . . . . 12 (๐‘ง = ๐‘ค โ†’ ((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)) = ((๐‘โ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)))
3534sumeq2sdv 15683 . . . . . . . . . . 11 (๐‘ง = ๐‘ค โ†’ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)) = ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)))
36 fveq2 6897 . . . . . . . . . . . . 13 (๐‘˜ = ๐‘— โ†’ (๐‘โ€˜๐‘˜) = (๐‘โ€˜๐‘—))
3736, 27oveq12d 7438 . . . . . . . . . . . 12 (๐‘˜ = ๐‘— โ†’ ((๐‘โ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)) = ((๐‘โ€˜๐‘—) ยท (๐‘คโ†‘๐‘—)))
3837cbvsumv 15675 . . . . . . . . . . 11 ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘คโ†‘๐‘˜)) = ฮฃ๐‘— โˆˆ (0...๐‘›)((๐‘โ€˜๐‘—) ยท (๐‘คโ†‘๐‘—))
3935, 38eqtrdi 2784 . . . . . . . . . 10 (๐‘ง = ๐‘ค โ†’ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)) = ฮฃ๐‘— โˆˆ (0...๐‘›)((๐‘โ€˜๐‘—) ยท (๐‘คโ†‘๐‘—)))
4039cbvmptv 5261 . . . . . . . . 9 (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))) = (๐‘ค โˆˆ โ„‚ โ†ฆ ฮฃ๐‘— โˆˆ (0...๐‘›)((๐‘โ€˜๐‘—) ยท (๐‘คโ†‘๐‘—)))
4133, 40eqtrdi 2784 . . . . . . . 8 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ ๐บ = (๐‘ค โˆˆ โ„‚ โ†ฆ ฮฃ๐‘— โˆˆ (0...๐‘›)((๐‘โ€˜๐‘—) ยท (๐‘คโ†‘๐‘—))))
4212, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41plyaddlem 26162 . . . . . . 7 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)) โˆง (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))) โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†))
43423expia 1119 . . . . . 6 (((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โˆง (๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0) โˆง ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0))) โ†’ ((((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†)))
4443rexlimdvva 3208 . . . . 5 ((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โ†’ (โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)(((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง ((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†)))
4510, 44biimtrrid 242 . . . 4 ((๐œ‘ โˆง (๐‘š โˆˆ โ„•0 โˆง ๐‘› โˆˆ โ„•0)) โ†’ ((โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†)))
4645rexlimdvva 3208 . . 3 (๐œ‘ โ†’ (โˆƒ๐‘š โˆˆ โ„•0 โˆƒ๐‘› โˆˆ โ„•0 (โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†)))
479, 46biimtrrid 242 . 2 (๐œ‘ โ†’ ((โˆƒ๐‘š โˆˆ โ„•0 โˆƒ๐‘Ž โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘š + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘š)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โˆง โˆƒ๐‘› โˆˆ โ„•0 โˆƒ๐‘ โˆˆ ((๐‘† โˆช {0}) โ†‘m โ„•0)((๐‘ โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐บ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘โ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†)))
484, 8, 47mp2and 698 1 (๐œ‘ โ†’ (๐น โˆ˜f + ๐บ) โˆˆ (Polyโ€˜๐‘†))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099  โˆƒwrex 3067   โˆช cun 3945   โІ wss 3947  {csn 4629   โ†ฆ cmpt 5231   โ€œ cima 5681  โ€˜cfv 6548  (class class class)co 7420   โˆ˜f cof 7683   โ†‘m cmap 8845  โ„‚cc 11137  0cc0 11139  1c1 11140   + caddc 11142   ยท cmul 11144  โ„•0cn0 12503  โ„คโ‰ฅcuz 12853  ...cfz 13517  โ†‘cexp 14059  ฮฃcsu 15665  Polycply 26131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666  df-ply 26135
This theorem is referenced by:  plysub  26166  plyaddcl  26167  plyco  26188  plydivlem4  26244  iaa  26273  rngunsnply  42597
  Copyright terms: Public domain W3C validator