MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmul Structured version   Visualization version   GIF version

Theorem ntrivcvgmul 15898
Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmul.1 𝑍 = (ℤ𝑀)
ntrivcvgmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvgmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmul.5 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
ntrivcvgmul.6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmul.7 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmul (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑚,𝐹,𝑧   𝑛,𝐺,𝑦   𝑚,𝐻,𝑛,𝑦,𝑧,𝑝   𝜑,𝑚   𝑤,𝑚,𝑦,𝑧   𝑛,𝑝   𝜑,𝑛   𝑤,𝑛,𝑦,𝑧,𝑝   𝜑,𝑦,𝑧   𝑦,𝑤,𝑧   𝑚,𝑍,𝑛,𝑦,𝑧   𝑤,𝐹   𝑤,𝐺   𝐻,𝑝,𝑤   𝑍,𝑝   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻,𝑚,𝑛   𝜑,𝑘,𝑦,𝑧   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑤,𝑝)   𝐹(𝑦,𝑛,𝑝)   𝐺(𝑧,𝑚,𝑝)   𝑀(𝑦,𝑧,𝑤,𝑘,𝑚,𝑛,𝑝)   𝑍(𝑤)

Proof of Theorem ntrivcvgmul
StepHypRef Expression
1 ntrivcvgmul.3 . . 3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 ntrivcvgmul.5 . . 3 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
3 exdistrv 1952 . . . . 5 (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
432rexbii 3119 . . . 4 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ ∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
5 reeanv 3217 . . . 4 (∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
64, 5bitri 274 . . 3 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
71, 2, 6sylanbrc 581 . 2 (𝜑 → ∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
8 ntrivcvgmul.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 uzssz 12886 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
108, 9eqsstri 4013 . . . . . . . 8 𝑍 ⊆ ℤ
11 simp2l 1196 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛𝑍)
1210, 11sselid 3976 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℤ)
1312zred 12709 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℝ)
14 simp2r 1197 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚𝑍)
1510, 14sselid 3976 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℤ)
1615zred 12709 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℝ)
17 simpl2l 1223 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑍)
18 simpl2r 1224 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑚𝑍)
19 simp3ll 1241 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑦 ≠ 0)
2019adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑦 ≠ 0)
21 simp3rl 1243 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑧 ≠ 0)
2221adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑧 ≠ 0)
23 simp3lr 1242 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑛( · , 𝐹) ⇝ 𝑦)
2423adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑛( · , 𝐹) ⇝ 𝑦)
25 simp3rr 1244 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑚( · , 𝐺) ⇝ 𝑧)
2625adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑚( · , 𝐺) ⇝ 𝑧)
27 simpl1 1188 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝜑)
28 ntrivcvgmul.4 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2927, 28sylan 578 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
30 ntrivcvgmul.6 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3127, 30sylan 578 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
32 simpr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑚)
33 ntrivcvgmul.7 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
3427, 33sylan 578 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
358, 17, 18, 20, 22, 24, 26, 29, 31, 32, 34ntrivcvgmullem 15897 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
36 simpl2r 1224 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑍)
37 simpl2l 1223 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑛𝑍)
3821adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑧 ≠ 0)
3919adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑦 ≠ 0)
4025adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑚( · , 𝐺) ⇝ 𝑧)
4123adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑛( · , 𝐹) ⇝ 𝑦)
42 simpl1 1188 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝜑)
4342, 30sylan 578 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
4442, 28sylan 578 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
45 simpr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑛)
4628, 30mulcomd 11273 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐺𝑘) · (𝐹𝑘)))
4733, 46eqtrd 2766 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
4842, 47sylan 578 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
498, 36, 37, 38, 39, 40, 41, 43, 44, 45, 48ntrivcvgmullem 15897 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
5013, 16, 35, 49lecasei 11358 . . . . 5 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
51503expia 1118 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5251exlimdvv 1930 . . 3 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5352rexlimdvva 3202 . 2 (𝜑 → (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
547, 53mpd 15 1 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wex 1774  wcel 2099  wne 2930  wrex 3060   class class class wbr 5143  cfv 6543  (class class class)co 7413  cc 11144  0cc0 11146   · cmul 11151  cle 11287  cz 12601  cuz 12865  seqcseq 14012  cli 15478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-inf2 9674  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9475  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-n0 12516  df-z 12602  df-uz 12866  df-rp 13020  df-fz 13530  df-fzo 13673  df-seq 14013  df-exp 14073  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-clim 15482
This theorem is referenced by:  iprodmul  15997
  Copyright terms: Public domain W3C validator