MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmul Structured version   Visualization version   GIF version

Theorem ntrivcvgmul 15250
Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmul.1 𝑍 = (ℤ𝑀)
ntrivcvgmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvgmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmul.5 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
ntrivcvgmul.6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmul.7 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmul (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑚,𝐹,𝑧   𝑛,𝐺,𝑦   𝑚,𝐻,𝑛,𝑦,𝑧,𝑝   𝜑,𝑚   𝑤,𝑚,𝑦,𝑧   𝑛,𝑝   𝜑,𝑛   𝑤,𝑛,𝑦,𝑧,𝑝   𝜑,𝑦,𝑧   𝑦,𝑤,𝑧   𝑚,𝑍,𝑛,𝑦,𝑧   𝑤,𝐹   𝑤,𝐺   𝐻,𝑝,𝑤   𝑍,𝑝   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻,𝑚,𝑛   𝜑,𝑘,𝑦,𝑧   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑤,𝑝)   𝐹(𝑦,𝑛,𝑝)   𝐺(𝑧,𝑚,𝑝)   𝑀(𝑦,𝑧,𝑤,𝑘,𝑚,𝑛,𝑝)   𝑍(𝑤)

Proof of Theorem ntrivcvgmul
StepHypRef Expression
1 ntrivcvgmul.3 . . 3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 ntrivcvgmul.5 . . 3 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
3 exdistrv 1950 . . . . 5 (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
432rexbii 3246 . . . 4 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ ∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
5 reeanv 3366 . . . 4 (∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
64, 5bitri 277 . . 3 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
71, 2, 6sylanbrc 585 . 2 (𝜑 → ∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
8 ntrivcvgmul.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 uzssz 12256 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
108, 9eqsstri 3999 . . . . . . . 8 𝑍 ⊆ ℤ
11 simp2l 1194 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛𝑍)
1210, 11sseldi 3963 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℤ)
1312zred 12079 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℝ)
14 simp2r 1195 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚𝑍)
1510, 14sseldi 3963 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℤ)
1615zred 12079 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℝ)
17 simpl2l 1221 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑍)
18 simpl2r 1222 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑚𝑍)
19 simp3ll 1239 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑦 ≠ 0)
2019adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑦 ≠ 0)
21 simp3rl 1241 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑧 ≠ 0)
2221adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑧 ≠ 0)
23 simp3lr 1240 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑛( · , 𝐹) ⇝ 𝑦)
2423adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑛( · , 𝐹) ⇝ 𝑦)
25 simp3rr 1242 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑚( · , 𝐺) ⇝ 𝑧)
2625adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑚( · , 𝐺) ⇝ 𝑧)
27 simpl1 1186 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝜑)
28 ntrivcvgmul.4 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2927, 28sylan 582 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
30 ntrivcvgmul.6 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3127, 30sylan 582 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
32 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑚)
33 ntrivcvgmul.7 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
3427, 33sylan 582 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
358, 17, 18, 20, 22, 24, 26, 29, 31, 32, 34ntrivcvgmullem 15249 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
36 simpl2r 1222 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑍)
37 simpl2l 1221 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑛𝑍)
3821adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑧 ≠ 0)
3919adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑦 ≠ 0)
4025adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑚( · , 𝐺) ⇝ 𝑧)
4123adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑛( · , 𝐹) ⇝ 𝑦)
42 simpl1 1186 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝜑)
4342, 30sylan 582 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
4442, 28sylan 582 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
45 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑛)
4628, 30mulcomd 10654 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐺𝑘) · (𝐹𝑘)))
4733, 46eqtrd 2854 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
4842, 47sylan 582 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
498, 36, 37, 38, 39, 40, 41, 43, 44, 45, 48ntrivcvgmullem 15249 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
5013, 16, 35, 49lecasei 10738 . . . . 5 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
51503expia 1116 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5251exlimdvv 1929 . . 3 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5352rexlimdvva 3292 . 2 (𝜑 → (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
547, 53mpd 15 1 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wex 1774  wcel 2108  wne 3014  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529   · cmul 10534  cle 10668  cz 11973  cuz 12235  seqcseq 13361  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  iprodmul  15349
  Copyright terms: Public domain W3C validator