MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmul Structured version   Visualization version   GIF version

Theorem ntrivcvgmul 15250
Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmul.1 𝑍 = (ℤ𝑀)
ntrivcvgmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvgmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmul.5 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
ntrivcvgmul.6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmul.7 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmul (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑚,𝐹,𝑧   𝑛,𝐺,𝑦   𝑚,𝐻,𝑛,𝑦,𝑧,𝑝   𝜑,𝑚   𝑤,𝑚,𝑦,𝑧   𝑛,𝑝   𝜑,𝑛   𝑤,𝑛,𝑦,𝑧,𝑝   𝜑,𝑦,𝑧   𝑦,𝑤,𝑧   𝑚,𝑍,𝑛,𝑦,𝑧   𝑤,𝐹   𝑤,𝐺   𝐻,𝑝,𝑤   𝑍,𝑝   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻,𝑚,𝑛   𝜑,𝑘,𝑦,𝑧   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑤,𝑝)   𝐹(𝑦,𝑛,𝑝)   𝐺(𝑧,𝑚,𝑝)   𝑀(𝑦,𝑧,𝑤,𝑘,𝑚,𝑛,𝑝)   𝑍(𝑤)

Proof of Theorem ntrivcvgmul
StepHypRef Expression
1 ntrivcvgmul.3 . . 3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 ntrivcvgmul.5 . . 3 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
3 exdistrv 1956 . . . . 5 (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
432rexbii 3211 . . . 4 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ ∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
5 reeanv 3320 . . . 4 (∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
64, 5bitri 278 . . 3 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
71, 2, 6sylanbrc 586 . 2 (𝜑 → ∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
8 ntrivcvgmul.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 uzssz 12252 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
108, 9eqsstri 3949 . . . . . . . 8 𝑍 ⊆ ℤ
11 simp2l 1196 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛𝑍)
1210, 11sseldi 3913 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℤ)
1312zred 12075 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℝ)
14 simp2r 1197 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚𝑍)
1510, 14sseldi 3913 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℤ)
1615zred 12075 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℝ)
17 simpl2l 1223 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑍)
18 simpl2r 1224 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑚𝑍)
19 simp3ll 1241 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑦 ≠ 0)
2019adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑦 ≠ 0)
21 simp3rl 1243 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑧 ≠ 0)
2221adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑧 ≠ 0)
23 simp3lr 1242 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑛( · , 𝐹) ⇝ 𝑦)
2423adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑛( · , 𝐹) ⇝ 𝑦)
25 simp3rr 1244 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑚( · , 𝐺) ⇝ 𝑧)
2625adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑚( · , 𝐺) ⇝ 𝑧)
27 simpl1 1188 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝜑)
28 ntrivcvgmul.4 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2927, 28sylan 583 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
30 ntrivcvgmul.6 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3127, 30sylan 583 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
32 simpr 488 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑚)
33 ntrivcvgmul.7 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
3427, 33sylan 583 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
358, 17, 18, 20, 22, 24, 26, 29, 31, 32, 34ntrivcvgmullem 15249 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
36 simpl2r 1224 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑍)
37 simpl2l 1223 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑛𝑍)
3821adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑧 ≠ 0)
3919adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑦 ≠ 0)
4025adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑚( · , 𝐺) ⇝ 𝑧)
4123adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑛( · , 𝐹) ⇝ 𝑦)
42 simpl1 1188 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝜑)
4342, 30sylan 583 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
4442, 28sylan 583 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
45 simpr 488 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑛)
4628, 30mulcomd 10651 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐺𝑘) · (𝐹𝑘)))
4733, 46eqtrd 2833 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
4842, 47sylan 583 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
498, 36, 37, 38, 39, 40, 41, 43, 44, 45, 48ntrivcvgmullem 15249 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
5013, 16, 35, 49lecasei 10735 . . . . 5 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
51503expia 1118 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5251exlimdvv 1935 . . 3 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5352rexlimdvva 3253 . 2 (𝜑 → (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
547, 53mpd 15 1 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   · cmul 10531  cle 10665  cz 11969  cuz 12231  seqcseq 13364  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  iprodmul  15349
  Copyright terms: Public domain W3C validator