MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmul Structured version   Visualization version   GIF version

Theorem ntrivcvgmul 15935
Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmul.1 𝑍 = (ℤ𝑀)
ntrivcvgmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvgmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmul.5 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
ntrivcvgmul.6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmul.7 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmul (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑚,𝐹,𝑧   𝑛,𝐺,𝑦   𝑚,𝐻,𝑛,𝑦,𝑧,𝑝   𝜑,𝑚   𝑤,𝑚,𝑦,𝑧   𝑛,𝑝   𝜑,𝑛   𝑤,𝑛,𝑦,𝑧,𝑝   𝜑,𝑦,𝑧   𝑦,𝑤,𝑧   𝑚,𝑍,𝑛,𝑦,𝑧   𝑤,𝐹   𝑤,𝐺   𝐻,𝑝,𝑤   𝑍,𝑝   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻,𝑚,𝑛   𝜑,𝑘,𝑦,𝑧   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑤,𝑝)   𝐹(𝑦,𝑛,𝑝)   𝐺(𝑧,𝑚,𝑝)   𝑀(𝑦,𝑧,𝑤,𝑘,𝑚,𝑛,𝑝)   𝑍(𝑤)

Proof of Theorem ntrivcvgmul
StepHypRef Expression
1 ntrivcvgmul.3 . . 3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 ntrivcvgmul.5 . . 3 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
3 exdistrv 1953 . . . . 5 (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
432rexbii 3127 . . . 4 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ ∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
5 reeanv 3227 . . . 4 (∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
64, 5bitri 275 . . 3 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
71, 2, 6sylanbrc 583 . 2 (𝜑 → ∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
8 ntrivcvgmul.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 uzssz 12897 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
108, 9eqsstri 4030 . . . . . . . 8 𝑍 ⊆ ℤ
11 simp2l 1198 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛𝑍)
1210, 11sselid 3993 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℤ)
1312zred 12720 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℝ)
14 simp2r 1199 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚𝑍)
1510, 14sselid 3993 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℤ)
1615zred 12720 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℝ)
17 simpl2l 1225 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑍)
18 simpl2r 1226 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑚𝑍)
19 simp3ll 1243 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑦 ≠ 0)
2019adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑦 ≠ 0)
21 simp3rl 1245 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑧 ≠ 0)
2221adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑧 ≠ 0)
23 simp3lr 1244 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑛( · , 𝐹) ⇝ 𝑦)
2423adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑛( · , 𝐹) ⇝ 𝑦)
25 simp3rr 1246 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑚( · , 𝐺) ⇝ 𝑧)
2625adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑚( · , 𝐺) ⇝ 𝑧)
27 simpl1 1190 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝜑)
28 ntrivcvgmul.4 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2927, 28sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
30 ntrivcvgmul.6 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3127, 30sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
32 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑚)
33 ntrivcvgmul.7 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
3427, 33sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
358, 17, 18, 20, 22, 24, 26, 29, 31, 32, 34ntrivcvgmullem 15934 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
36 simpl2r 1226 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑍)
37 simpl2l 1225 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑛𝑍)
3821adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑧 ≠ 0)
3919adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑦 ≠ 0)
4025adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑚( · , 𝐺) ⇝ 𝑧)
4123adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑛( · , 𝐹) ⇝ 𝑦)
42 simpl1 1190 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝜑)
4342, 30sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
4442, 28sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
45 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑛)
4628, 30mulcomd 11280 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐺𝑘) · (𝐹𝑘)))
4733, 46eqtrd 2775 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
4842, 47sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
498, 36, 37, 38, 39, 40, 41, 43, 44, 45, 48ntrivcvgmullem 15934 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
5013, 16, 35, 49lecasei 11365 . . . . 5 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
51503expia 1120 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5251exlimdvv 1932 . . 3 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5352rexlimdvva 3211 . 2 (𝜑 → (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
547, 53mpd 15 1 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153   · cmul 11158  cle 11294  cz 12611  cuz 12876  seqcseq 14039  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  iprodmul  16036
  Copyright terms: Public domain W3C validator