Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42b Structured version   Visualization version   GIF version

Theorem cdleme42b 38054
 Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 6-Mar-2013.)
Hypotheses
Ref Expression
cdleme41.b 𝐵 = (Base‘𝐾)
cdleme41.l = (le‘𝐾)
cdleme41.j = (join‘𝐾)
cdleme41.m = (meet‘𝐾)
cdleme41.a 𝐴 = (Atoms‘𝐾)
cdleme41.h 𝐻 = (LHyp‘𝐾)
cdleme41.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme41.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme41.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme41.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme41.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme41.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme41.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme41.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme42b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) = (𝑅 / 𝑠𝑁 (𝑋 𝑊)))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠   𝑦,𝑡,𝐴,𝑠   𝐵,𝑠,𝑡,𝑦   𝑦,𝐷   𝑦,𝐺   𝐸,𝑠,𝑦   𝐻,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝐾,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝑡, ,𝑦   𝑡,𝑃,𝑦   𝑡,𝑄,𝑦   𝑡,𝑅,𝑦   𝑡,𝑈,𝑦   𝑡,𝑊,𝑦   𝑥,𝑧,𝐴   𝑥,𝐵,𝑧   𝑧,𝐸,𝑠   𝑧,𝐻   𝑥, ,𝑧   𝑧,𝐾   𝑥, ,𝑧   𝑥, ,𝑧   𝑥,𝑁,𝑧   𝑥,𝑃,𝑧   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑈,𝑧   𝑥,𝑊,𝑧,𝑠,𝑡,𝑦   𝑋,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑥,𝑧,𝑡,𝑠)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme42b
StepHypRef Expression
1 cdleme41.b . . 3 𝐵 = (Base‘𝐾)
21fvexi 6672 . 2 𝐵 ∈ V
3 nfv 1915 . . 3 𝑠(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋))
4 nfcsb1v 3829 . . . . 5 𝑠𝑅 / 𝑠𝑁
5 nfcv 2919 . . . . 5 𝑠
6 nfcv 2919 . . . . 5 𝑠(𝑋 𝑊)
74, 5, 6nfov 7180 . . . 4 𝑠(𝑅 / 𝑠𝑁 (𝑋 𝑊))
87a1i 11 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → 𝑠(𝑅 / 𝑠𝑁 (𝑋 𝑊)))
9 nfvd 1916 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → Ⅎ𝑠𝑅 𝑊 ∧ (𝑅 (𝑋 𝑊)) = 𝑋))
10 cdleme41.o . . . . 5 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
11 cdleme41.f . . . . 5 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
12 eqid 2758 . . . . 5 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
1310, 11, 12cdleme31fv1 37967 . . . 4 ((𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
14133ad2ant2 1131 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
15 breq1 5035 . . . . . 6 (𝑠 = 𝑅 → (𝑠 𝑊𝑅 𝑊))
1615notbid 321 . . . . 5 (𝑠 = 𝑅 → (¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊))
17 oveq1 7157 . . . . . 6 (𝑠 = 𝑅 → (𝑠 (𝑋 𝑊)) = (𝑅 (𝑋 𝑊)))
1817eqeq1d 2760 . . . . 5 (𝑠 = 𝑅 → ((𝑠 (𝑋 𝑊)) = 𝑋 ↔ (𝑅 (𝑋 𝑊)) = 𝑋))
1916, 18anbi12d 633 . . . 4 (𝑠 = 𝑅 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ↔ (¬ 𝑅 𝑊 ∧ (𝑅 (𝑋 𝑊)) = 𝑋)))
2019adantl 485 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) ∧ 𝑠 = 𝑅) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ↔ (¬ 𝑅 𝑊 ∧ (𝑅 (𝑋 𝑊)) = 𝑋)))
21 csbeq1a 3819 . . . . 5 (𝑠 = 𝑅𝑁 = 𝑅 / 𝑠𝑁)
2221oveq1d 7165 . . . 4 (𝑠 = 𝑅 → (𝑁 (𝑋 𝑊)) = (𝑅 / 𝑠𝑁 (𝑋 𝑊)))
2322adantl 485 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) ∧ 𝑠 = 𝑅) → (𝑁 (𝑋 𝑊)) = (𝑅 / 𝑠𝑁 (𝑋 𝑊)))
24 simp1 1133 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
25 simp2l 1196 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
26 cdleme41.l . . . . 5 = (le‘𝐾)
27 cdleme41.j . . . . 5 = (join‘𝐾)
28 cdleme41.m . . . . 5 = (meet‘𝐾)
29 cdleme41.a . . . . 5 𝐴 = (Atoms‘𝐾)
30 cdleme41.h . . . . 5 𝐻 = (LHyp‘𝐾)
31 cdleme41.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
32 cdleme41.d . . . . 5 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
33 cdleme41.e . . . . 5 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
34 cdleme41.g . . . . 5 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
35 cdleme41.i . . . . 5 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
36 cdleme41.n . . . . 5 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
371, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 10, 11cdleme32fvcl 38016 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
3824, 25, 37syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) ∈ 𝐵)
39 simp3ll 1241 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → 𝑅𝐴)
40 simp3lr 1242 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → ¬ 𝑅 𝑊)
41 simp3r 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → (𝑅 (𝑋 𝑊)) = 𝑋)
4240, 41jca 515 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → (¬ 𝑅 𝑊 ∧ (𝑅 (𝑋 𝑊)) = 𝑋))
433, 8, 9, 14, 20, 23, 38, 39, 42riotasv2d 36533 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) ∧ 𝐵 ∈ V) → (𝐹𝑋) = (𝑅 / 𝑠𝑁 (𝑋 𝑊)))
442, 43mpan2 690 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) = (𝑅 / 𝑠𝑁 (𝑋 𝑊)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Ⅎwnfc 2899   ≠ wne 2951  ∀wral 3070  Vcvv 3409  ⦋csb 3805  ifcif 4420   class class class wbr 5032   ↦ cmpt 5112  ‘cfv 6335  ℩crio 7107  (class class class)co 7150  Basecbs 16541  lecple 16630  joincjn 17620  meetcmee 17621  Atomscatm 36839  HLchlt 36926  LHypclh 37560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-riotaBAD 36529 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-undef 7949  df-proset 17604  df-poset 17622  df-plt 17634  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-p1 17716  df-lat 17722  df-clat 17784  df-oposet 36752  df-ol 36754  df-oml 36755  df-covers 36842  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927  df-llines 37074  df-lplanes 37075  df-lvols 37076  df-lines 37077  df-psubsp 37079  df-pmap 37080  df-padd 37372  df-lhyp 37564 This theorem is referenced by:  cdleme42e  38055  cdleme48fv  38075
 Copyright terms: Public domain W3C validator