Proof of Theorem cdleme42b
Step | Hyp | Ref
| Expression |
1 | | cdleme41.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | 1 | fvexi 6672 |
. 2
⊢ 𝐵 ∈ V |
3 | | nfv 1915 |
. . 3
⊢
Ⅎ𝑠(((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
4 | | nfcsb1v 3829 |
. . . . 5
⊢
Ⅎ𝑠⦋𝑅 / 𝑠⦌𝑁 |
5 | | nfcv 2919 |
. . . . 5
⊢
Ⅎ𝑠
∨ |
6 | | nfcv 2919 |
. . . . 5
⊢
Ⅎ𝑠(𝑋 ∧ 𝑊) |
7 | 4, 5, 6 | nfov 7180 |
. . . 4
⊢
Ⅎ𝑠(⦋𝑅 / 𝑠⦌𝑁 ∨ (𝑋 ∧ 𝑊)) |
8 | 7 | a1i 11 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → Ⅎ𝑠(⦋𝑅 / 𝑠⦌𝑁 ∨ (𝑋 ∧ 𝑊))) |
9 | | nfvd 1916 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → Ⅎ𝑠(¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
10 | | cdleme41.o |
. . . . 5
⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
11 | | cdleme41.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
12 | | eqid 2758 |
. . . . 5
⊢
(℩𝑧
∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) |
13 | 10, 11, 12 | cdleme31fv1 37967 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
14 | 13 | 3ad2ant2 1131 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
15 | | breq1 5035 |
. . . . . 6
⊢ (𝑠 = 𝑅 → (𝑠 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊)) |
16 | 15 | notbid 321 |
. . . . 5
⊢ (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊)) |
17 | | oveq1 7157 |
. . . . . 6
⊢ (𝑠 = 𝑅 → (𝑠 ∨ (𝑋 ∧ 𝑊)) = (𝑅 ∨ (𝑋 ∧ 𝑊))) |
18 | 17 | eqeq1d 2760 |
. . . . 5
⊢ (𝑠 = 𝑅 → ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ↔ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
19 | 16, 18 | anbi12d 633 |
. . . 4
⊢ (𝑠 = 𝑅 → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ↔ (¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
20 | 19 | adantl 485 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ 𝑠 = 𝑅) → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ↔ (¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
21 | | csbeq1a 3819 |
. . . . 5
⊢ (𝑠 = 𝑅 → 𝑁 = ⦋𝑅 / 𝑠⦌𝑁) |
22 | 21 | oveq1d 7165 |
. . . 4
⊢ (𝑠 = 𝑅 → (𝑁 ∨ (𝑋 ∧ 𝑊)) = (⦋𝑅 / 𝑠⦌𝑁 ∨ (𝑋 ∧ 𝑊))) |
23 | 22 | adantl 485 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ 𝑠 = 𝑅) → (𝑁 ∨ (𝑋 ∧ 𝑊)) = (⦋𝑅 / 𝑠⦌𝑁 ∨ (𝑋 ∧ 𝑊))) |
24 | | simp1 1133 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
25 | | simp2l 1196 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) |
26 | | cdleme41.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
27 | | cdleme41.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
28 | | cdleme41.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
29 | | cdleme41.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
30 | | cdleme41.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
31 | | cdleme41.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
32 | | cdleme41.d |
. . . . 5
⊢ 𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
33 | | cdleme41.e |
. . . . 5
⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
34 | | cdleme41.g |
. . . . 5
⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
35 | | cdleme41.i |
. . . . 5
⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
36 | | cdleme41.n |
. . . . 5
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
37 | 1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 10, 11 | cdleme32fvcl 38016 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
38 | 24, 25, 37 | syl2anc 587 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) ∈ 𝐵) |
39 | | simp3ll 1241 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑅 ∈ 𝐴) |
40 | | simp3lr 1242 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ¬ 𝑅 ≤ 𝑊) |
41 | | simp3r 1199 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
42 | 40, 41 | jca 515 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
43 | 3, 8, 9, 14, 20, 23, 38, 39, 42 | riotasv2d 36533 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ 𝐵 ∈ V) → (𝐹‘𝑋) = (⦋𝑅 / 𝑠⦌𝑁 ∨ (𝑋 ∧ 𝑊))) |
44 | 2, 43 | mpan2 690 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘𝑋) = (⦋𝑅 / 𝑠⦌𝑁 ∨ (𝑋 ∧ 𝑊))) |