MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oiso2 Structured version   Visualization version   GIF version

Theorem f1oiso2 6745
Description: Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
f1oiso2.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}
Assertion
Ref Expression
f1oiso2 (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem f1oiso2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oiso2.1 . . 3 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}
2 f1ocnvdm 6683 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → (𝐻𝑥) ∈ 𝐴)
32adantrr 696 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ 𝐴)
433adant3 1126 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑥) ∈ 𝐴)
5 f1ocnvdm 6683 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → (𝐻𝑦) ∈ 𝐴)
65adantrl 695 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ 𝐴)
763adant3 1126 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑦) ∈ 𝐴)
8 f1ocnvfv2 6676 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → (𝐻‘(𝐻𝑥)) = 𝑥)
98eqcomd 2777 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → 𝑥 = (𝐻‘(𝐻𝑥)))
10 f1ocnvfv2 6676 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → (𝐻‘(𝐻𝑦)) = 𝑦)
1110eqcomd 2777 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → 𝑦 = (𝐻‘(𝐻𝑦)))
129, 11anim12dan 605 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))))
13123adant3 1126 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))))
14 simp3 1132 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑥)𝑅(𝐻𝑦))
15 fveq2 6332 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → (𝐻𝑤) = (𝐻‘(𝐻𝑦)))
1615eqeq2d 2781 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (𝑦 = (𝐻𝑤) ↔ 𝑦 = (𝐻‘(𝐻𝑦))))
1716anbi2d 614 . . . . . . . . . 10 (𝑤 = (𝐻𝑦) → ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ↔ (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦)))))
18 breq2 4790 . . . . . . . . . 10 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑅𝑤 ↔ (𝐻𝑥)𝑅(𝐻𝑦)))
1917, 18anbi12d 616 . . . . . . . . 9 (𝑤 = (𝐻𝑦) → (((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤) ↔ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))) ∧ (𝐻𝑥)𝑅(𝐻𝑦))))
2019rspcev 3460 . . . . . . . 8 (((𝐻𝑦) ∈ 𝐴 ∧ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))) ∧ (𝐻𝑥)𝑅(𝐻𝑦))) → ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤))
217, 13, 14, 20syl12anc 1474 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤))
22 fveq2 6332 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝐻𝑧) = (𝐻‘(𝐻𝑥)))
2322eqeq2d 2781 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → (𝑥 = (𝐻𝑧) ↔ 𝑥 = (𝐻‘(𝐻𝑥))))
2423anbi1d 615 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ↔ (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤))))
25 breq1 4789 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧𝑅𝑤 ↔ (𝐻𝑥)𝑅𝑤))
2624, 25anbi12d 616 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → (((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) ↔ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)))
2726rexbidv 3200 . . . . . . . 8 (𝑧 = (𝐻𝑥) → (∃𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) ↔ ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)))
2827rspcev 3460 . . . . . . 7 (((𝐻𝑥) ∈ 𝐴 ∧ ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤))
294, 21, 28syl2anc 573 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤))
30293expib 1116 . . . . 5 (𝐻:𝐴1-1-onto𝐵 → (((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)))
31 simp3ll 1310 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥 = (𝐻𝑧))
32 simp1 1130 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝐻:𝐴1-1-onto𝐵)
33 simp2l 1241 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧𝐴)
34 f1of 6278 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
3534ffvelrnda 6502 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑧𝐴) → (𝐻𝑧) ∈ 𝐵)
3632, 33, 35syl2anc 573 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑧) ∈ 𝐵)
3731, 36eqeltrd 2850 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥𝐵)
38 simp3lr 1311 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦 = (𝐻𝑤))
39 simp2r 1242 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑤𝐴)
4034ffvelrnda 6502 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑤𝐴) → (𝐻𝑤) ∈ 𝐵)
4132, 39, 40syl2anc 573 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑤) ∈ 𝐵)
4238, 41eqeltrd 2850 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦𝐵)
43 simp3r 1244 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧𝑅𝑤)
4431eqcomd 2777 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑧) = 𝑥)
45 f1ocnvfv 6677 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑧𝐴) → ((𝐻𝑧) = 𝑥 → (𝐻𝑥) = 𝑧))
4632, 33, 45syl2anc 573 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻𝑧) = 𝑥 → (𝐻𝑥) = 𝑧))
4744, 46mpd 15 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑥) = 𝑧)
4838eqcomd 2777 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑤) = 𝑦)
49 f1ocnvfv 6677 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑤𝐴) → ((𝐻𝑤) = 𝑦 → (𝐻𝑦) = 𝑤))
5032, 39, 49syl2anc 573 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻𝑤) = 𝑦 → (𝐻𝑦) = 𝑤))
5148, 50mpd 15 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑦) = 𝑤)
5243, 47, 513brtr4d 4818 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑥)𝑅(𝐻𝑦))
5337, 42, 52jca31 504 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)))
54533exp 1112 . . . . . 6 (𝐻:𝐴1-1-onto𝐵 → ((𝑧𝐴𝑤𝐴) → (((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)))))
5554rexlimdvv 3185 . . . . 5 (𝐻:𝐴1-1-onto𝐵 → (∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))))
5630, 55impbid 202 . . . 4 (𝐻:𝐴1-1-onto𝐵 → (((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) ↔ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)))
5756opabbidv 4850 . . 3 (𝐻:𝐴1-1-onto𝐵 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)})
581, 57syl5eq 2817 . 2 (𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)})
59 f1oiso 6744 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
6058, 59mpdan 667 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wrex 3062   class class class wbr 4786  {copab 4846  ccnv 5248  1-1-ontowf1o 6030  cfv 6031   Isom wiso 6032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040
This theorem is referenced by:  fnwelem  7443
  Copyright terms: Public domain W3C validator