MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti2 Structured version   Visualization version   GIF version

Theorem tghilberti2 28661
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti2 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
543ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
763ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝐵)
8 tglineelsb2.2 . . . . . . 7 (𝜑𝑄𝐵)
983ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝐵)
10 tglineelsb2.4 . . . . . . 7 (𝜑𝑃𝑄)
11103ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
12 simp2l 1198 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 ∈ ran 𝐿)
13 simp3ll 1243 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑥)
14 simp3lr 1244 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑥)
151, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14tglinethru 28659 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = (𝑃𝐿𝑄))
16 simp2r 1199 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ ran 𝐿)
17 simp3rl 1245 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑦)
18 simp3rr 1246 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑦)
191, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18tglinethru 28659 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃𝐿𝑄))
2015, 19eqtr4d 2778 . . . 4 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦)
21203expia 1120 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿)) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2221ralrimivva 3200 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
23 eleq2w 2823 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
24 eleq2w 2823 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2523, 24anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2625rmo4 3739 . 2 (∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2722, 26sylibr 234 1 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  ∃*wrmo 3377  ran crn 5690  cfv 6563  (class class class)co 7431  Basecbs 17245  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476  df-cgrg 28534
This theorem is referenced by:  tglinethrueu  28662
  Copyright terms: Public domain W3C validator