Step | Hyp | Ref
| Expression |
1 | | tglineelsb2.p |
. . . . . 6
β’ π΅ = (BaseβπΊ) |
2 | | tglineelsb2.i |
. . . . . 6
β’ πΌ = (ItvβπΊ) |
3 | | tglineelsb2.l |
. . . . . 6
β’ πΏ = (LineGβπΊ) |
4 | | tglineelsb2.g |
. . . . . . 7
β’ (π β πΊ β TarskiG) |
5 | 4 | 3ad2ant1 1132 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β πΊ β TarskiG) |
6 | | tglineelsb2.1 |
. . . . . . 7
β’ (π β π β π΅) |
7 | 6 | 3ad2ant1 1132 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π β π΅) |
8 | | tglineelsb2.2 |
. . . . . . 7
β’ (π β π β π΅) |
9 | 8 | 3ad2ant1 1132 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π β π΅) |
10 | | tglineelsb2.4 |
. . . . . . 7
β’ (π β π β π) |
11 | 10 | 3ad2ant1 1132 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π β π) |
12 | | simp2l 1198 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π₯ β ran πΏ) |
13 | | simp3ll 1243 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π β π₯) |
14 | | simp3lr 1244 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π β π₯) |
15 | 1, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14 | tglinethru 28155 |
. . . . 5
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π₯ = (ππΏπ)) |
16 | | simp2r 1199 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π¦ β ran πΏ) |
17 | | simp3rl 1245 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π β π¦) |
18 | | simp3rr 1246 |
. . . . . 6
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π β π¦) |
19 | 1, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18 | tglinethru 28155 |
. . . . 5
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π¦ = (ππΏπ)) |
20 | 15, 19 | eqtr4d 2774 |
. . . 4
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ) β§ ((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦))) β π₯ = π¦) |
21 | 20 | 3expia 1120 |
. . 3
β’ ((π β§ (π₯ β ran πΏ β§ π¦ β ran πΏ)) β (((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦)) β π₯ = π¦)) |
22 | 21 | ralrimivva 3199 |
. 2
β’ (π β βπ₯ β ran πΏβπ¦ β ran πΏ(((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦)) β π₯ = π¦)) |
23 | | eleq2w 2816 |
. . . 4
β’ (π₯ = π¦ β (π β π₯ β π β π¦)) |
24 | | eleq2w 2816 |
. . . 4
β’ (π₯ = π¦ β (π β π₯ β π β π¦)) |
25 | 23, 24 | anbi12d 630 |
. . 3
β’ (π₯ = π¦ β ((π β π₯ β§ π β π₯) β (π β π¦ β§ π β π¦))) |
26 | 25 | rmo4 3726 |
. 2
β’
(β*π₯ β
ran πΏ(π β π₯ β§ π β π₯) β βπ₯ β ran πΏβπ¦ β ran πΏ(((π β π₯ β§ π β π₯) β§ (π β π¦ β§ π β π¦)) β π₯ = π¦)) |
27 | 22, 26 | sylibr 233 |
1
β’ (π β β*π₯ β ran πΏ(π β π₯ β§ π β π₯)) |