MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti2 Structured version   Visualization version   GIF version

Theorem tghilberti2 28601
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti2 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
543ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
763ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝐵)
8 tglineelsb2.2 . . . . . . 7 (𝜑𝑄𝐵)
983ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝐵)
10 tglineelsb2.4 . . . . . . 7 (𝜑𝑃𝑄)
11103ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
12 simp2l 1200 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 ∈ ran 𝐿)
13 simp3ll 1245 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑥)
14 simp3lr 1246 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑥)
151, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14tglinethru 28599 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = (𝑃𝐿𝑄))
16 simp2r 1201 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ ran 𝐿)
17 simp3rl 1247 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑦)
18 simp3rr 1248 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑦)
191, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18tglinethru 28599 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃𝐿𝑄))
2015, 19eqtr4d 2767 . . . 4 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦)
21203expia 1121 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿)) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2221ralrimivva 3172 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
23 eleq2w 2812 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
24 eleq2w 2812 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2523, 24anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2625rmo4 3692 . 2 (∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2722, 26sylibr 234 1 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ∃*wrmo 3344  ran crn 5624  cfv 6486  (class class class)co 7353  Basecbs 17138  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkg 28416  df-cgrg 28474
This theorem is referenced by:  tglinethrueu  28602
  Copyright terms: Public domain W3C validator