MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti2 Structured version   Visualization version   GIF version

Theorem tghilberti2 26427
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti2 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
543ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
763ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝐵)
8 tglineelsb2.2 . . . . . . 7 (𝜑𝑄𝐵)
983ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝐵)
10 tglineelsb2.4 . . . . . . 7 (𝜑𝑃𝑄)
11103ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
12 simp2l 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 ∈ ran 𝐿)
13 simp3ll 1240 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑥)
14 simp3lr 1241 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑥)
151, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14tglinethru 26425 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = (𝑃𝐿𝑄))
16 simp2r 1196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ ran 𝐿)
17 simp3rl 1242 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑦)
18 simp3rr 1243 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑦)
191, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18tglinethru 26425 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃𝐿𝑄))
2015, 19eqtr4d 2862 . . . 4 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦)
21203expia 1117 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿)) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2221ralrimivva 3194 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
23 eleq2w 2899 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
24 eleq2w 2899 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2523, 24anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2625rmo4 3724 . 2 (∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2722, 26sylibr 236 1 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  ∃*wrmo 3144  ran crn 5559  cfv 6358  (class class class)co 7159  Basecbs 16486  TarskiGcstrkg 26219  Itvcitv 26225  LineGclng 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-trkgc 26237  df-trkgb 26238  df-trkgcb 26239  df-trkg 26242  df-cgrg 26300
This theorem is referenced by:  tglinethrueu  26428
  Copyright terms: Public domain W3C validator