MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti2 Structured version   Visualization version   GIF version

Theorem tghilberti2 28157
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglineelsb2.1 (πœ‘ β†’ 𝑃 ∈ 𝐡)
tglineelsb2.2 (πœ‘ β†’ 𝑄 ∈ 𝐡)
tglineelsb2.4 (πœ‘ β†’ 𝑃 β‰  𝑄)
Assertion
Ref Expression
tghilberti2 (πœ‘ β†’ βˆƒ*π‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐺   π‘₯,𝐼   π‘₯,𝐿   π‘₯,𝑃   π‘₯,𝑄   πœ‘,π‘₯

Proof of Theorem tghilberti2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.i . . . . . 6 𝐼 = (Itvβ€˜πΊ)
3 tglineelsb2.l . . . . . 6 𝐿 = (LineGβ€˜πΊ)
4 tglineelsb2.g . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ TarskiG)
543ad2ant1 1132 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . . . 7 (πœ‘ β†’ 𝑃 ∈ 𝐡)
763ad2ant1 1132 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑃 ∈ 𝐡)
8 tglineelsb2.2 . . . . . . 7 (πœ‘ β†’ 𝑄 ∈ 𝐡)
983ad2ant1 1132 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑄 ∈ 𝐡)
10 tglineelsb2.4 . . . . . . 7 (πœ‘ β†’ 𝑃 β‰  𝑄)
11103ad2ant1 1132 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑃 β‰  𝑄)
12 simp2l 1198 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ π‘₯ ∈ ran 𝐿)
13 simp3ll 1243 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑃 ∈ π‘₯)
14 simp3lr 1244 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑄 ∈ π‘₯)
151, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14tglinethru 28155 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ π‘₯ = (𝑃𝐿𝑄))
16 simp2r 1199 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑦 ∈ ran 𝐿)
17 simp3rl 1245 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑃 ∈ 𝑦)
18 simp3rr 1246 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑄 ∈ 𝑦)
191, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18tglinethru 28155 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ 𝑦 = (𝑃𝐿𝑄))
2015, 19eqtr4d 2774 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) β†’ π‘₯ = 𝑦)
21203expia 1120 . . 3 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿)) β†’ (((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) β†’ π‘₯ = 𝑦))
2221ralrimivva 3199 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ ran πΏβˆ€π‘¦ ∈ ran 𝐿(((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) β†’ π‘₯ = 𝑦))
23 eleq2w 2816 . . . 4 (π‘₯ = 𝑦 β†’ (𝑃 ∈ π‘₯ ↔ 𝑃 ∈ 𝑦))
24 eleq2w 2816 . . . 4 (π‘₯ = 𝑦 β†’ (𝑄 ∈ π‘₯ ↔ 𝑄 ∈ 𝑦))
2523, 24anbi12d 630 . . 3 (π‘₯ = 𝑦 β†’ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)))
2625rmo4 3726 . 2 (βˆƒ*π‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ↔ βˆ€π‘₯ ∈ ran πΏβˆ€π‘¦ ∈ ran 𝐿(((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) β†’ π‘₯ = 𝑦))
2722, 26sylibr 233 1 (πœ‘ β†’ βˆƒ*π‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  βˆƒ*wrmo 3374  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  TarskiGcstrkg 27946  Itvcitv 27952  LineGclng 27953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-oadd 8474  df-er 8707  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-concat 14526  df-s1 14551  df-s2 14804  df-s3 14805  df-trkgc 27967  df-trkgb 27968  df-trkgcb 27969  df-trkg 27972  df-cgrg 28030
This theorem is referenced by:  tglinethrueu  28158
  Copyright terms: Public domain W3C validator