MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti2 Structured version   Visualization version   GIF version

Theorem tghilberti2 25993
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti2 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
543ad2ant1 1124 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
763ad2ant1 1124 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝐵)
8 tglineelsb2.2 . . . . . . 7 (𝜑𝑄𝐵)
983ad2ant1 1124 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝐵)
10 tglineelsb2.4 . . . . . . 7 (𝜑𝑃𝑄)
11103ad2ant1 1124 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
12 simp2l 1213 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 ∈ ran 𝐿)
13 simp3ll 1282 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑥)
14 simp3lr 1283 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑥)
151, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14tglinethru 25991 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = (𝑃𝐿𝑄))
16 simp2r 1214 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ ran 𝐿)
17 simp3rl 1284 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑦)
18 simp3rr 1285 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑦)
191, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18tglinethru 25991 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃𝐿𝑄))
2015, 19eqtr4d 2817 . . . 4 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦)
21203expia 1111 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿)) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2221ralrimivva 3153 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
23 eleq2w 2843 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
24 eleq2w 2843 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2523, 24anbi12d 624 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2625rmo4 3611 . 2 (∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2722, 26sylibr 226 1 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  ∃*wrmo 3093  ran crn 5358  cfv 6137  (class class class)co 6924  Basecbs 16259  TarskiGcstrkg 25785  Itvcitv 25791  LineGclng 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-xnn0 11719  df-z 11733  df-uz 11997  df-fz 12648  df-fzo 12789  df-hash 13440  df-word 13604  df-concat 13665  df-s1 13690  df-s2 14003  df-s3 14004  df-trkgc 25803  df-trkgb 25804  df-trkgcb 25805  df-trkg 25808  df-cgrg 25866
This theorem is referenced by:  tglinethrueu  25994
  Copyright terms: Public domain W3C validator