![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tghilberti2 | Structured version Visualization version GIF version |
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tghilberti2 | ⊢ (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | 3ad2ant1 1124 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝐺 ∈ TarskiG) |
6 | tglineelsb2.1 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
7 | 6 | 3ad2ant1 1124 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ∈ 𝐵) |
8 | tglineelsb2.2 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
9 | 8 | 3ad2ant1 1124 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑄 ∈ 𝐵) |
10 | tglineelsb2.4 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
11 | 10 | 3ad2ant1 1124 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ≠ 𝑄) |
12 | simp2l 1213 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 ∈ ran 𝐿) | |
13 | simp3ll 1282 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ∈ 𝑥) | |
14 | simp3lr 1283 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑄 ∈ 𝑥) | |
15 | 1, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14 | tglinethru 25991 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = (𝑃𝐿𝑄)) |
16 | simp2r 1214 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 ∈ ran 𝐿) | |
17 | simp3rl 1284 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ∈ 𝑦) | |
18 | simp3rr 1285 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑄 ∈ 𝑦) | |
19 | 1, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18 | tglinethru 25991 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 = (𝑃𝐿𝑄)) |
20 | 15, 19 | eqtr4d 2817 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦) |
21 | 20 | 3expia 1111 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿)) → (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
22 | 21 | ralrimivva 3153 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ran 𝐿∀𝑦 ∈ ran 𝐿(((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
23 | eleq2w 2843 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
24 | eleq2w 2843 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦)) | |
25 | 23, 24 | anbi12d 624 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) |
26 | 25 | rmo4 3611 | . 2 ⊢ (∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ ∀𝑥 ∈ ran 𝐿∀𝑦 ∈ ran 𝐿(((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
27 | 22, 26 | sylibr 226 | 1 ⊢ (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ∃*wrmo 3093 ran crn 5358 ‘cfv 6137 (class class class)co 6924 Basecbs 16259 TarskiGcstrkg 25785 Itvcitv 25791 LineGclng 25792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-xnn0 11719 df-z 11733 df-uz 11997 df-fz 12648 df-fzo 12789 df-hash 13440 df-word 13604 df-concat 13665 df-s1 13690 df-s2 14003 df-s3 14004 df-trkgc 25803 df-trkgb 25804 df-trkgcb 25805 df-trkg 25808 df-cgrg 25866 |
This theorem is referenced by: tglinethrueu 25994 |
Copyright terms: Public domain | W3C validator |