MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti2 Structured version   Visualization version   GIF version

Theorem tghilberti2 28646
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti2 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
543ad2ant1 1134 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
763ad2ant1 1134 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝐵)
8 tglineelsb2.2 . . . . . . 7 (𝜑𝑄𝐵)
983ad2ant1 1134 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝐵)
10 tglineelsb2.4 . . . . . . 7 (𝜑𝑃𝑄)
11103ad2ant1 1134 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
12 simp2l 1200 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 ∈ ran 𝐿)
13 simp3ll 1245 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑥)
14 simp3lr 1246 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑥)
151, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14tglinethru 28644 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = (𝑃𝐿𝑄))
16 simp2r 1201 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ ran 𝐿)
17 simp3rl 1247 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑦)
18 simp3rr 1248 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑄𝑦)
191, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18tglinethru 28644 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃𝐿𝑄))
2015, 19eqtr4d 2780 . . . 4 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦)
21203expia 1122 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿)) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2221ralrimivva 3202 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
23 eleq2w 2825 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
24 eleq2w 2825 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2523, 24anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2625rmo4 3736 . 2 (∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ ran 𝐿𝑦 ∈ ran 𝐿(((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2722, 26sylibr 234 1 (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  ∃*wrmo 3379  ran crn 5686  cfv 6561  (class class class)co 7431  Basecbs 17247  TarskiGcstrkg 28435  Itvcitv 28441  LineGclng 28442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461  df-cgrg 28519
This theorem is referenced by:  tglinethrueu  28647
  Copyright terms: Public domain W3C validator