Proof of Theorem cdleme28
| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1204 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 2 | | simp12 1205 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑃 ≠ 𝑄) |
| 3 | | simp2l 1200 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑠 ∈ 𝐴) |
| 4 | | simp3ll 1245 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑠 ≤ 𝑊) |
| 5 | 3, 4 | jca 511 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
| 6 | | simp2r 1201 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑡 ∈ 𝐴) |
| 7 | | simp3rl 1247 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑡 ≤ 𝑊) |
| 8 | 6, 7 | jca 511 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
| 9 | | simp3lr 1246 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
| 10 | | simp3rr 1248 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
| 11 | | simp13 1206 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
| 12 | | cdleme26.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 13 | | cdleme26.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 14 | | cdleme26.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 15 | | cdleme26.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 16 | | cdleme26.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 17 | | cdleme26.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 18 | | cdleme27.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 19 | | cdleme27.f |
. . . . 5
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
| 20 | | cdleme27.z |
. . . . 5
⊢ 𝑍 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
| 21 | | cdleme27.n |
. . . . 5
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) |
| 22 | | cdleme27.d |
. . . . 5
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
| 23 | | cdleme27.c |
. . . . 5
⊢ 𝐶 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) |
| 24 | | cdleme27.g |
. . . . 5
⊢ 𝐺 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 25 | | cdleme27.o |
. . . . 5
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
| 26 | | cdleme27.e |
. . . . 5
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
| 27 | | cdleme27.y |
. . . . 5
⊢ 𝑌 = if(𝑡 ≤ (𝑃 ∨ 𝑄), 𝐸, 𝐺) |
| 28 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 | cdleme28c 40374 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))) |
| 29 | 1, 2, 5, 8, 9, 10,
11, 28 | syl133anc 1395 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))) |
| 30 | 29 | 3exp 1120 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))))) |
| 31 | 30 | ralrimivv 3200 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊)))) |