Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rl | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 767 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: omeu 8378 hashbclem 14092 ntrivcvgmul 15542 tsmsxp 23214 tgqioo 23869 ovolunlem2 24567 plyadd 25283 plymul 25284 coeeu 25291 tghilberti2 26903 cvmlift2lem10 33174 nosupbnd1lem2 33839 noinfbnd1lem2 33854 btwnconn1lem1 34316 btwnconn1lem2 34317 btwnconn1lem12 34327 lplnexllnN 37505 2llnjN 37508 4atlem12b 37552 lplncvrlvol2 37556 lncmp 37724 cdlema2N 37733 cdlemc2 38133 cdleme11a 38201 cdleme22eALTN 38286 cdleme24 38293 cdleme27a 38308 cdleme27N 38310 cdleme28 38314 cdlemefs29bpre0N 38357 cdlemefs29bpre1N 38358 cdlemefs29cpre1N 38359 cdlemefs29clN 38360 cdlemefs32fvaN 38363 cdlemefs32fva1 38364 cdleme36m 38402 cdleme39a 38406 cdleme17d3 38437 cdleme50trn2 38492 cdlemg36 38655 cdlemj3 38764 cdlemkfid1N 38862 cdlemkid1 38863 cdlemk19ylem 38871 cdlemk19xlem 38883 dihlsscpre 39175 dihord4 39199 dihatlat 39275 mapdh9a 39730 jm2.27 40746 |
Copyright terms: Public domain | W3C validator |