| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rl | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: omeu 8508 hashbclem 14363 ntrivcvgmul 15813 tsmsxp 24073 tgqioo 24718 ovolunlem2 25429 plyadd 26152 plymul 26153 coeeu 26160 nosupbnd1lem2 27651 noinfbnd1lem2 27666 tghilberti2 28619 cvmlift2lem10 35379 btwnconn1lem1 36154 btwnconn1lem2 36155 btwnconn1lem12 36165 lplnexllnN 39686 2llnjN 39689 4atlem12b 39733 lplncvrlvol2 39737 lncmp 39905 cdlema2N 39914 cdlemc2 40314 cdleme11a 40382 cdleme22eALTN 40467 cdleme24 40474 cdleme27a 40489 cdleme27N 40491 cdleme28 40495 cdlemefs29bpre0N 40538 cdlemefs29bpre1N 40539 cdlemefs29cpre1N 40540 cdlemefs29clN 40541 cdlemefs32fvaN 40544 cdlemefs32fva1 40545 cdleme36m 40583 cdleme39a 40587 cdleme17d3 40618 cdleme50trn2 40673 cdlemg36 40836 cdlemj3 40945 cdlemkfid1N 41043 cdlemkid1 41044 cdlemk19ylem 41052 cdlemk19xlem 41064 dihlsscpre 41356 dihord4 41380 dihatlat 41456 mapdh9a 41911 jm2.27 43128 |
| Copyright terms: Public domain | W3C validator |