| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rl | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: omeu 8500 hashbclem 14359 ntrivcvgmul 15809 tsmsxp 24071 tgqioo 24716 ovolunlem2 25427 plyadd 26150 plymul 26151 coeeu 26158 nosupbnd1lem2 27649 noinfbnd1lem2 27664 tghilberti2 28617 cvmlift2lem10 35354 btwnconn1lem1 36127 btwnconn1lem2 36128 btwnconn1lem12 36138 lplnexllnN 39609 2llnjN 39612 4atlem12b 39656 lplncvrlvol2 39660 lncmp 39828 cdlema2N 39837 cdlemc2 40237 cdleme11a 40305 cdleme22eALTN 40390 cdleme24 40397 cdleme27a 40412 cdleme27N 40414 cdleme28 40418 cdlemefs29bpre0N 40461 cdlemefs29bpre1N 40462 cdlemefs29cpre1N 40463 cdlemefs29clN 40464 cdlemefs32fvaN 40467 cdlemefs32fva1 40468 cdleme36m 40506 cdleme39a 40510 cdleme17d3 40541 cdleme50trn2 40596 cdlemg36 40759 cdlemj3 40868 cdlemkfid1N 40966 cdlemkid1 40967 cdlemk19ylem 40975 cdlemk19xlem 40987 dihlsscpre 41279 dihord4 41303 dihatlat 41379 mapdh9a 41834 jm2.27 43047 |
| Copyright terms: Public domain | W3C validator |