MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3rl Structured version   Visualization version   GIF version

Theorem simp3rl 1244
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3rl ((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simp3rl
StepHypRef Expression
1 simprl 767 . 2 ((𝜒 ∧ (𝜑𝜓)) → 𝜑)
213ad2ant3 1133 1 ((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  omeu  8378  hashbclem  14092  ntrivcvgmul  15542  tsmsxp  23214  tgqioo  23869  ovolunlem2  24567  plyadd  25283  plymul  25284  coeeu  25291  tghilberti2  26903  cvmlift2lem10  33174  nosupbnd1lem2  33839  noinfbnd1lem2  33854  btwnconn1lem1  34316  btwnconn1lem2  34317  btwnconn1lem12  34327  lplnexllnN  37505  2llnjN  37508  4atlem12b  37552  lplncvrlvol2  37556  lncmp  37724  cdlema2N  37733  cdlemc2  38133  cdleme11a  38201  cdleme22eALTN  38286  cdleme24  38293  cdleme27a  38308  cdleme27N  38310  cdleme28  38314  cdlemefs29bpre0N  38357  cdlemefs29bpre1N  38358  cdlemefs29cpre1N  38359  cdlemefs29clN  38360  cdlemefs32fvaN  38363  cdlemefs32fva1  38364  cdleme36m  38402  cdleme39a  38406  cdleme17d3  38437  cdleme50trn2  38492  cdlemg36  38655  cdlemj3  38764  cdlemkfid1N  38862  cdlemkid1  38863  cdlemk19ylem  38871  cdlemk19xlem  38883  dihlsscpre  39175  dihord4  39199  dihatlat  39275  mapdh9a  39730  jm2.27  40746
  Copyright terms: Public domain W3C validator