Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rl | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: omeu 8416 hashbclem 14164 ntrivcvgmul 15614 tsmsxp 23306 tgqioo 23963 ovolunlem2 24662 plyadd 25378 plymul 25379 coeeu 25386 tghilberti2 26999 cvmlift2lem10 33274 nosupbnd1lem2 33912 noinfbnd1lem2 33927 btwnconn1lem1 34389 btwnconn1lem2 34390 btwnconn1lem12 34400 lplnexllnN 37578 2llnjN 37581 4atlem12b 37625 lplncvrlvol2 37629 lncmp 37797 cdlema2N 37806 cdlemc2 38206 cdleme11a 38274 cdleme22eALTN 38359 cdleme24 38366 cdleme27a 38381 cdleme27N 38383 cdleme28 38387 cdlemefs29bpre0N 38430 cdlemefs29bpre1N 38431 cdlemefs29cpre1N 38432 cdlemefs29clN 38433 cdlemefs32fvaN 38436 cdlemefs32fva1 38437 cdleme36m 38475 cdleme39a 38479 cdleme17d3 38510 cdleme50trn2 38565 cdlemg36 38728 cdlemj3 38837 cdlemkfid1N 38935 cdlemkid1 38936 cdlemk19ylem 38944 cdlemk19xlem 38956 dihlsscpre 39248 dihord4 39272 dihatlat 39348 mapdh9a 39803 jm2.27 40830 |
Copyright terms: Public domain | W3C validator |