![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rl | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 758 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant3 1115 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: omeu 8012 hashbclem 13623 ntrivcvgmul 15118 tsmsxp 22466 tgqioo 23111 ovolunlem2 23802 plyadd 24510 plymul 24511 coeeu 24518 tghilberti2 26126 cvmlift2lem10 32141 nosupbnd1lem2 32727 btwnconn1lem1 33066 btwnconn1lem2 33067 btwnconn1lem12 33077 lplnexllnN 36142 2llnjN 36145 4atlem12b 36189 lplncvrlvol2 36193 lncmp 36361 cdlema2N 36370 cdlemc2 36770 cdleme11a 36838 cdleme22eALTN 36923 cdleme24 36930 cdleme27a 36945 cdleme27N 36947 cdleme28 36951 cdlemefs29bpre0N 36994 cdlemefs29bpre1N 36995 cdlemefs29cpre1N 36996 cdlemefs29clN 36997 cdlemefs32fvaN 37000 cdlemefs32fva1 37001 cdleme36m 37039 cdleme39a 37043 cdleme17d3 37074 cdleme50trn2 37129 cdlemg36 37292 cdlemj3 37401 cdlemkfid1N 37499 cdlemkid1 37500 cdlemk19ylem 37508 cdlemk19xlem 37520 dihlsscpre 37812 dihord4 37836 dihatlat 37912 mapdh9a 38367 jm2.27 38998 |
Copyright terms: Public domain | W3C validator |