| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rl | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rl | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: omeu 8597 hashbclem 14470 ntrivcvgmul 15918 tsmsxp 24093 tgqioo 24739 ovolunlem2 25451 plyadd 26174 plymul 26175 coeeu 26182 nosupbnd1lem2 27673 noinfbnd1lem2 27688 tghilberti2 28617 cvmlift2lem10 35334 btwnconn1lem1 36105 btwnconn1lem2 36106 btwnconn1lem12 36116 lplnexllnN 39583 2llnjN 39586 4atlem12b 39630 lplncvrlvol2 39634 lncmp 39802 cdlema2N 39811 cdlemc2 40211 cdleme11a 40279 cdleme22eALTN 40364 cdleme24 40371 cdleme27a 40386 cdleme27N 40388 cdleme28 40392 cdlemefs29bpre0N 40435 cdlemefs29bpre1N 40436 cdlemefs29cpre1N 40437 cdlemefs29clN 40438 cdlemefs32fvaN 40441 cdlemefs32fva1 40442 cdleme36m 40480 cdleme39a 40484 cdleme17d3 40515 cdleme50trn2 40570 cdlemg36 40733 cdlemj3 40842 cdlemkfid1N 40940 cdlemkid1 40941 cdlemk19ylem 40949 cdlemk19xlem 40961 dihlsscpre 41253 dihord4 41277 dihatlat 41353 mapdh9a 41808 jm2.27 43032 |
| Copyright terms: Public domain | W3C validator |