Step | Hyp | Ref
| Expression |
1 | | plyadd.1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
2 | | elply2 25346 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑚 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
3 | 2 | simprbi 497 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑚 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
4 | 1, 3 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
5 | | plyadd.2 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
6 | | elply2 25346 |
. . . 4
⊢ (𝐺 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) |
7 | 6 | simprbi 497 |
. . 3
⊢ (𝐺 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0
∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) |
8 | 5, 7 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) |
9 | | reeanv 3293 |
. . 3
⊢
(∃𝑚 ∈
ℕ0 ∃𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) ↔ (∃𝑚 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑛 ∈ ℕ0 ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) |
10 | | reeanv 3293 |
. . . . 5
⊢
(∃𝑎 ∈
((𝑆 ∪ {0})
↑m ℕ0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)(((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) ↔ (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) |
11 | | simp1l 1196 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝜑) |
12 | 11, 1 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐹 ∈ (Poly‘𝑆)) |
13 | 11, 5 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐺 ∈ (Poly‘𝑆)) |
14 | | plyadd.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
15 | 11, 14 | sylan 580 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
16 | | simp1rl 1237 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑚 ∈ ℕ0) |
17 | | simp1rr 1238 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑛 ∈ ℕ0) |
18 | | simp2l 1198 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
19 | | simp2r 1199 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
20 | | simp3ll 1243 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → (𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0}) |
21 | | simp3rl 1245 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → (𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0}) |
22 | | simp3lr 1244 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
23 | | oveq1 7276 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑧↑𝑘) = (𝑤↑𝑘)) |
24 | 23 | oveq2d 7285 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑎‘𝑘) · (𝑧↑𝑘)) = ((𝑎‘𝑘) · (𝑤↑𝑘))) |
25 | 24 | sumeq2sdv 15405 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑤↑𝑘))) |
26 | | fveq2 6768 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑎‘𝑘) = (𝑎‘𝑗)) |
27 | | oveq2 7277 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑤↑𝑘) = (𝑤↑𝑗)) |
28 | 26, 27 | oveq12d 7287 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑎‘𝑘) · (𝑤↑𝑘)) = ((𝑎‘𝑗) · (𝑤↑𝑗))) |
29 | 28 | cbvsumv 15397 |
. . . . . . . . . . 11
⊢
Σ𝑘 ∈
(0...𝑚)((𝑎‘𝑘) · (𝑤↑𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗)) |
30 | 25, 29 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗))) |
31 | 30 | cbvmptv 5188 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗))) |
32 | 22, 31 | eqtrdi 2794 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗)))) |
33 | | simp3rr 1246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))) |
34 | 23 | oveq2d 7285 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑏‘𝑘) · (𝑧↑𝑘)) = ((𝑏‘𝑘) · (𝑤↑𝑘))) |
35 | 34 | sumeq2sdv 15405 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑤↑𝑘))) |
36 | | fveq2 6768 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑏‘𝑘) = (𝑏‘𝑗)) |
37 | 36, 27 | oveq12d 7287 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑏‘𝑘) · (𝑤↑𝑘)) = ((𝑏‘𝑗) · (𝑤↑𝑗))) |
38 | 37 | cbvsumv 15397 |
. . . . . . . . . . 11
⊢
Σ𝑘 ∈
(0...𝑛)((𝑏‘𝑘) · (𝑤↑𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗)) |
39 | 35, 38 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗))) |
40 | 39 | cbvmptv 5188 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗))) |
41 | 33, 40 | eqtrdi 2794 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐺 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗)))) |
42 | | plymul.4 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
43 | 11, 42 | sylan 580 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
44 | 12, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41, 43 | plymullem 25366 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) |
45 | 44 | 3expia 1120 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0))) → ((((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆))) |
46 | 45 | rexlimdvva 3222 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ (∃𝑎 ∈
((𝑆 ∪ {0})
↑m ℕ0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)(((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆))) |
47 | 10, 46 | syl5bir 242 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ ((∃𝑎 ∈
((𝑆 ∪ {0})
↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆))) |
48 | 47 | rexlimdvva 3222 |
. . 3
⊢ (𝜑 → (∃𝑚 ∈ ℕ0 ∃𝑛 ∈ ℕ0
(∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆))) |
49 | 9, 48 | syl5bir 242 |
. 2
⊢ (𝜑 → ((∃𝑚 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑛 ∈ ℕ0 ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆))) |
50 | 4, 8, 49 | mp2and 696 |
1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) |