MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymul Structured version   Visualization version   GIF version

Theorem plymul 25368
Description: The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plymul.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plymul (𝜑 → (𝐹f · 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑆,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦

Proof of Theorem plymul
Dummy variables 𝑘 𝑚 𝑛 𝑧 𝑎 𝑏 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 25346 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))))
32simprbi 497 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
41, 3syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
5 plyadd.2 . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
6 elply2 25346 . . . 4 (𝐺 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
76simprbi 497 . . 3 (𝐺 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
85, 7syl 17 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
9 reeanv 3293 . . 3 (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
10 reeanv 3293 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
11 simp1l 1196 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝜑)
1211, 1syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
1311, 5syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 ∈ (Poly‘𝑆))
14 plyadd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1511, 14sylan 580 . . . . . . . 8 ((((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
16 simp1rl 1237 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
17 simp1rr 1238 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
18 simp2l 1198 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))
19 simp2r 1199 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0))
20 simp3ll 1243 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑚 + 1))) = {0})
21 simp3rl 1245 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑛 + 1))) = {0})
22 simp3lr 1244 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))
23 oveq1 7276 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2423oveq2d 7285 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2524sumeq2sdv 15405 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)))
26 fveq2 6768 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
27 oveq2 7277 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2826, 27oveq12d 7287 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2928cbvsumv 15397 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))
3025, 29eqtrdi 2794 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3130cbvmptv 5188 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3222, 31eqtrdi 2794 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))))
33 simp3rr 1246 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
3423oveq2d 7285 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3534sumeq2sdv 15405 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)))
36 fveq2 6768 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3736, 27oveq12d 7287 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
3837cbvsumv 15397 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))
3935, 38eqtrdi 2794 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4039cbvmptv 5188 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4133, 40eqtrdi 2794 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))))
42 plymul.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
4311, 42sylan 580 . . . . . . . 8 ((((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
4412, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41, 43plymullem 25366 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝐹f · 𝐺) ∈ (Poly‘𝑆))
45443expia 1120 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f · 𝐺) ∈ (Poly‘𝑆)))
4645rexlimdvva 3222 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f · 𝐺) ∈ (Poly‘𝑆)))
4710, 46syl5bir 242 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f · 𝐺) ∈ (Poly‘𝑆)))
4847rexlimdvva 3222 . . 3 (𝜑 → (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f · 𝐺) ∈ (Poly‘𝑆)))
499, 48syl5bir 242 . 2 (𝜑 → ((∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹f · 𝐺) ∈ (Poly‘𝑆)))
504, 8, 49mp2and 696 1 (𝜑 → (𝐹f · 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cun 3886  wss 3888  {csn 4563  cmpt 5158  cima 5589  cfv 6428  (class class class)co 7269  f cof 7523  m cmap 8604  cc 10858  0cc0 10860  1c1 10861   + caddc 10863   · cmul 10865  0cn0 12222  cuz 12571  ...cfz 13228  cexp 13771  Σcsu 15386  Polycply 25334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-inf2 9388  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8487  df-map 8606  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-sup 9190  df-oi 9258  df-card 9686  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-3 12026  df-n0 12223  df-z 12309  df-uz 12572  df-rp 12720  df-fz 13229  df-fzo 13372  df-seq 13711  df-exp 13772  df-hash 14034  df-cj 14799  df-re 14800  df-im 14801  df-sqrt 14935  df-abs 14936  df-clim 15186  df-sum 15387  df-ply 25338
This theorem is referenced by:  plysub  25369  plymulcl  25371  plyco  25391  plydivlem2  25443  plydivlem4  25445  plydiveu  25447  plymulx0  32513  mpaaeu  40962  rngunsnply  40985
  Copyright terms: Public domain W3C validator