| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3ll | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1oiso2 7293 omeu 8510 ntrivcvgmul 15827 tsmsxp 24058 tgqioo 24704 ovolunlem2 25415 plyadd 26138 plymul 26139 coeeu 26146 nosupbnd1lem2 27637 noinfbnd1lem2 27652 tghilberti2 28601 btwnconn1lem2 36061 btwnconn1lem3 36062 btwnconn1lem12 36071 athgt 39435 2llnjN 39546 4atlem12b 39590 lncmp 39762 cdlema2N 39771 cdlemc2 40171 cdleme5 40219 cdleme11a 40239 cdleme21ct 40308 cdleme21 40316 cdleme22eALTN 40324 cdleme24 40331 cdleme27cl 40345 cdleme27a 40346 cdleme28 40352 cdleme36a 40439 cdleme42b 40457 cdleme48fvg 40479 cdlemf 40542 cdlemk39 40895 cdlemkid1 40901 dihlsscpre 41213 dihord4 41237 dihord5apre 41241 dihmeetlem20N 41305 mapdh9a 41768 pellex 42808 jm2.27 42981 |
| Copyright terms: Public domain | W3C validator |