MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3ll Structured version   Visualization version   GIF version

Theorem simp3ll 1245
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3ll ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜑)

Proof of Theorem simp3ll
StepHypRef Expression
1 simpll 766 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜑)
213ad2ant3 1135 1 ((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  f1oiso2  7293  omeu  8510  ntrivcvgmul  15827  tsmsxp  24058  tgqioo  24704  ovolunlem2  25415  plyadd  26138  plymul  26139  coeeu  26146  nosupbnd1lem2  27637  noinfbnd1lem2  27652  tghilberti2  28601  btwnconn1lem2  36061  btwnconn1lem3  36062  btwnconn1lem12  36071  athgt  39435  2llnjN  39546  4atlem12b  39590  lncmp  39762  cdlema2N  39771  cdlemc2  40171  cdleme5  40219  cdleme11a  40239  cdleme21ct  40308  cdleme21  40316  cdleme22eALTN  40324  cdleme24  40331  cdleme27cl  40345  cdleme27a  40346  cdleme28  40352  cdleme36a  40439  cdleme42b  40457  cdleme48fvg  40479  cdlemf  40542  cdlemk39  40895  cdlemkid1  40901  dihlsscpre  41213  dihord4  41237  dihord5apre  41241  dihmeetlem20N  41305  mapdh9a  41768  pellex  42808  jm2.27  42981
  Copyright terms: Public domain W3C validator