![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3ll | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: f1oiso2 7354 omeu 8599 ntrivcvgmul 15874 tsmsxp 24052 tgqioo 24709 ovolunlem2 25420 plyadd 26144 plymul 26145 coeeu 26152 nosupbnd1lem2 27635 noinfbnd1lem2 27650 tghilberti2 28435 btwnconn1lem2 35674 btwnconn1lem3 35675 btwnconn1lem12 35684 athgt 38918 2llnjN 39029 4atlem12b 39073 lncmp 39245 cdlema2N 39254 cdlemc2 39654 cdleme5 39702 cdleme11a 39722 cdleme21ct 39791 cdleme21 39799 cdleme22eALTN 39807 cdleme24 39814 cdleme27cl 39828 cdleme27a 39829 cdleme28 39835 cdleme36a 39922 cdleme42b 39940 cdleme48fvg 39962 cdlemf 40025 cdlemk39 40378 cdlemkid1 40384 dihlsscpre 40696 dihord4 40720 dihord5apre 40724 dihmeetlem20N 40788 mapdh9a 41251 pellex 42227 jm2.27 42401 |
Copyright terms: Public domain | W3C validator |