Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf Structured version   Visualization version   GIF version

Theorem cdlemf 36638
Description: Lemma F in [Crawley] p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf.l = (le‘𝐾)
cdlemf.a 𝐴 = (Atoms‘𝐾)
cdlemf.h 𝐻 = (LHyp‘𝐾)
cdlemf.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemf.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemf (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑇,𝑓   𝑈,𝑓   𝑓,𝑊
Allowed substitution hint:   𝑅(𝑓)

Proof of Theorem cdlemf
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemf.l . . 3 = (le‘𝐾)
2 eqid 2825 . . 3 (join‘𝐾) = (join‘𝐾)
3 cdlemf.a . . 3 𝐴 = (Atoms‘𝐾)
4 cdlemf.h . . 3 𝐻 = (LHyp‘𝐾)
5 eqid 2825 . . 3 (meet‘𝐾) = (meet‘𝐾)
61, 2, 3, 4, 5cdlemf2 36637 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)))
7 simp1l 1260 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2l 1262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → 𝑝𝐴)
9 simp3ll 1331 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ¬ 𝑝 𝑊)
10 simp2r 1263 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → 𝑞𝐴)
11 simp3lr 1332 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ¬ 𝑞 𝑊)
12 cdlemf.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
131, 3, 4, 12cdleme50ex 36634 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ∃𝑓𝑇 (𝑓𝑝) = 𝑞)
147, 8, 9, 10, 11, 13syl122anc 1504 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ∃𝑓𝑇 (𝑓𝑝) = 𝑞)
15 simp3r 1265 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑓𝑝) = 𝑞)
1615oveq2d 6921 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑝(join‘𝐾)(𝑓𝑝)) = (𝑝(join‘𝐾)𝑞))
1716oveq1d 6920 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊) = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))
18 simp11 1266 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simp3l 1264 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑓𝑇)
20 simp13l 1393 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑝𝐴)
21 simp2ll 1327 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → ¬ 𝑝 𝑊)
22 cdlemf.r . . . . . . . . . . . . 13 𝑅 = ((trL‘𝐾)‘𝑊)
231, 2, 5, 3, 4, 12, 22trlval2 36238 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑅𝑓) = ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊))
2418, 19, 20, 21, 23syl112anc 1499 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑅𝑓) = ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊))
25 simp2r 1263 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))
2617, 24, 253eqtr4d 2871 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑅𝑓) = 𝑈)
27263exp 1154 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈)))
28273expia 1156 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴𝑞𝐴) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈))))
29283imp 1143 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈))
3029expd 406 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (𝑓𝑇 → ((𝑓𝑝) = 𝑞 → (𝑅𝑓) = 𝑈)))
3130reximdvai 3223 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (∃𝑓𝑇 (𝑓𝑝) = 𝑞 → ∃𝑓𝑇 (𝑅𝑓) = 𝑈))
3214, 31mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
33323exp 1154 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴𝑞𝐴) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)))
3433rexlimdvv 3247 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈))
356, 34mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wrex 3118   class class class wbr 4873  cfv 6123  (class class class)co 6905  lecple 16312  joincjn 17297  meetcmee 17298  Atomscatm 35338  HLchlt 35425  LHypclh 36059  LTrncltrn 36176  trLctrl 36233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-riotaBAD 35028
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-undef 7664  df-map 8124  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-p1 17393  df-lat 17399  df-clat 17461  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-llines 35573  df-lplanes 35574  df-lvols 35575  df-lines 35576  df-psubsp 35578  df-pmap 35579  df-padd 35871  df-lhyp 36063  df-laut 36064  df-ldil 36179  df-ltrn 36180  df-trl 36234
This theorem is referenced by:  cdlemfnid  36639  trlord  36644  dih1dimb2  37316
  Copyright terms: Public domain W3C validator