Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf Structured version   Visualization version   GIF version

Theorem cdlemf 38351
Description: Lemma F in [Crawley] p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf.l = (le‘𝐾)
cdlemf.a 𝐴 = (Atoms‘𝐾)
cdlemf.h 𝐻 = (LHyp‘𝐾)
cdlemf.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemf.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemf (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑇,𝑓   𝑈,𝑓   𝑓,𝑊
Allowed substitution hint:   𝑅(𝑓)

Proof of Theorem cdlemf
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemf.l . . 3 = (le‘𝐾)
2 eqid 2739 . . 3 (join‘𝐾) = (join‘𝐾)
3 cdlemf.a . . 3 𝐴 = (Atoms‘𝐾)
4 cdlemf.h . . 3 𝐻 = (LHyp‘𝐾)
5 eqid 2739 . . 3 (meet‘𝐾) = (meet‘𝐾)
61, 2, 3, 4, 5cdlemf2 38350 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)))
7 simp1l 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2l 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → 𝑝𝐴)
9 simp3ll 1246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ¬ 𝑝 𝑊)
10 simp2r 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → 𝑞𝐴)
11 simp3lr 1247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ¬ 𝑞 𝑊)
12 cdlemf.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
131, 3, 4, 12cdleme50ex 38347 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ∃𝑓𝑇 (𝑓𝑝) = 𝑞)
147, 8, 9, 10, 11, 13syl122anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ∃𝑓𝑇 (𝑓𝑝) = 𝑞)
15 simp3r 1204 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑓𝑝) = 𝑞)
1615oveq2d 7251 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑝(join‘𝐾)(𝑓𝑝)) = (𝑝(join‘𝐾)𝑞))
1716oveq1d 7250 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊) = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))
18 simp11 1205 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simp3l 1203 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑓𝑇)
20 simp13l 1290 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑝𝐴)
21 simp2ll 1242 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → ¬ 𝑝 𝑊)
22 cdlemf.r . . . . . . . . . . . . 13 𝑅 = ((trL‘𝐾)‘𝑊)
231, 2, 5, 3, 4, 12, 22trlval2 37951 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑅𝑓) = ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊))
2418, 19, 20, 21, 23syl112anc 1376 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑅𝑓) = ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊))
25 simp2r 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))
2617, 24, 253eqtr4d 2789 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑅𝑓) = 𝑈)
27263exp 1121 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈)))
28273expia 1123 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴𝑞𝐴) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈))))
29283imp 1113 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈))
3029expd 419 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (𝑓𝑇 → ((𝑓𝑝) = 𝑞 → (𝑅𝑓) = 𝑈)))
3130reximdvai 3200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (∃𝑓𝑇 (𝑓𝑝) = 𝑞 → ∃𝑓𝑇 (𝑅𝑓) = 𝑈))
3214, 31mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
33323exp 1121 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴𝑞𝐴) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)))
3433rexlimdvv 3222 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈))
356, 34mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wrex 3065   class class class wbr 5070  cfv 6401  (class class class)co 7235  lecple 16842  joincjn 17851  meetcmee 17852  Atomscatm 37051  HLchlt 37138  LHypclh 37772  LTrncltrn 37889  trLctrl 37946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-riotaBAD 36741
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5472  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-1st 7783  df-2nd 7784  df-undef 8039  df-map 8534  df-proset 17835  df-poset 17853  df-plt 17869  df-lub 17885  df-glb 17886  df-join 17887  df-meet 17888  df-p0 17964  df-p1 17965  df-lat 17971  df-clat 18038  df-oposet 36964  df-ol 36966  df-oml 36967  df-covers 37054  df-ats 37055  df-atl 37086  df-cvlat 37110  df-hlat 37139  df-llines 37286  df-lplanes 37287  df-lvols 37288  df-lines 37289  df-psubsp 37291  df-pmap 37292  df-padd 37584  df-lhyp 37776  df-laut 37777  df-ldil 37892  df-ltrn 37893  df-trl 37947
This theorem is referenced by:  cdlemfnid  38352  trlord  38357  dih1dimb2  39029
  Copyright terms: Public domain W3C validator