Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf Structured version   Visualization version   GIF version

Theorem cdlemf 40682
Description: Lemma F in [Crawley] p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf.l = (le‘𝐾)
cdlemf.a 𝐴 = (Atoms‘𝐾)
cdlemf.h 𝐻 = (LHyp‘𝐾)
cdlemf.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemf.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemf (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑇,𝑓   𝑈,𝑓   𝑓,𝑊
Allowed substitution hint:   𝑅(𝑓)

Proof of Theorem cdlemf
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemf.l . . 3 = (le‘𝐾)
2 eqid 2733 . . 3 (join‘𝐾) = (join‘𝐾)
3 cdlemf.a . . 3 𝐴 = (Atoms‘𝐾)
4 cdlemf.h . . 3 𝐻 = (LHyp‘𝐾)
5 eqid 2733 . . 3 (meet‘𝐾) = (meet‘𝐾)
61, 2, 3, 4, 5cdlemf2 40681 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)))
7 simp1l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → 𝑝𝐴)
9 simp3ll 1245 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ¬ 𝑝 𝑊)
10 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → 𝑞𝐴)
11 simp3lr 1246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ¬ 𝑞 𝑊)
12 cdlemf.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
131, 3, 4, 12cdleme50ex 40678 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ∃𝑓𝑇 (𝑓𝑝) = 𝑞)
147, 8, 9, 10, 11, 13syl122anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ∃𝑓𝑇 (𝑓𝑝) = 𝑞)
15 simp3r 1203 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑓𝑝) = 𝑞)
1615oveq2d 7368 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑝(join‘𝐾)(𝑓𝑝)) = (𝑝(join‘𝐾)𝑞))
1716oveq1d 7367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊) = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))
18 simp11 1204 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simp3l 1202 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑓𝑇)
20 simp13l 1289 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑝𝐴)
21 simp2ll 1241 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → ¬ 𝑝 𝑊)
22 cdlemf.r . . . . . . . . . . . . 13 𝑅 = ((trL‘𝐾)‘𝑊)
231, 2, 5, 3, 4, 12, 22trlval2 40282 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑅𝑓) = ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊))
2418, 19, 20, 21, 23syl112anc 1376 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑅𝑓) = ((𝑝(join‘𝐾)(𝑓𝑝))(meet‘𝐾)𝑊))
25 simp2r 1201 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))
2617, 24, 253eqtr4d 2778 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) ∧ (𝑓𝑇 ∧ (𝑓𝑝) = 𝑞)) → (𝑅𝑓) = 𝑈)
27263exp 1119 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑝𝐴𝑞𝐴)) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈)))
28273expia 1121 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴𝑞𝐴) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈))))
29283imp 1110 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ((𝑓𝑇 ∧ (𝑓𝑝) = 𝑞) → (𝑅𝑓) = 𝑈))
3029expd 415 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (𝑓𝑇 → ((𝑓𝑝) = 𝑞 → (𝑅𝑓) = 𝑈)))
3130reximdvai 3144 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → (∃𝑓𝑇 (𝑓𝑝) = 𝑞 → ∃𝑓𝑇 (𝑅𝑓) = 𝑈))
3214, 31mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ (𝑝𝐴𝑞𝐴) ∧ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊))) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
33323exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑝𝐴𝑞𝐴) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)))
3433rexlimdvv 3189 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝑈 = ((𝑝(join‘𝐾)𝑞)(meet‘𝐾)𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈))
356, 34mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  lecple 17170  joincjn 18219  meetcmee 18220  Atomscatm 39382  HLchlt 39469  LHypclh 40103  LTrncltrn 40220  trLctrl 40277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-riotaBAD 39072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-undef 8209  df-map 8758  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617  df-lplanes 39618  df-lvols 39619  df-lines 39620  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107  df-laut 40108  df-ldil 40223  df-ltrn 40224  df-trl 40278
This theorem is referenced by:  cdlemfnid  40683  trlord  40688  dih1dimb2  41360
  Copyright terms: Public domain W3C validator