MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeu Structured version   Visualization version   GIF version

Theorem coeeu 26137
Description: Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
coeeu (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Distinct variable groups:   𝑧,𝑘   𝑛,𝑎,𝐹   𝑆,𝑎,𝑛   𝑘,𝑎,𝑧,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeu
Dummy variables 𝑏 𝑗 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26112 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3945 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 elply2 26108 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) ↔ (ℂ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
43simprbi 496 . . . . 5 (𝐹 ∈ (Poly‘ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
5 rexcom 3267 . . . . 5 (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
64, 5sylib 218 . . . 4 (𝐹 ∈ (Poly‘ℂ) → ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
72, 6syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
8 0cn 11173 . . . . . . 7 0 ∈ ℂ
9 snssi 4775 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
108, 9ax-mp 5 . . . . . 6 {0} ⊆ ℂ
11 ssequn2 4155 . . . . . 6 ({0} ⊆ ℂ ↔ (ℂ ∪ {0}) = ℂ)
1210, 11mpbi 230 . . . . 5 (ℂ ∪ {0}) = ℂ
1312oveq1i 7400 . . . 4 ((ℂ ∪ {0}) ↑m0) = (ℂ ↑m0)
1413rexeqi 3300 . . 3 (∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
157, 14sylib 218 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
16 reeanv 3210 . . . 4 (∃𝑛 ∈ ℕ0𝑚 ∈ ℕ0 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
17 simp1l 1198 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
18 simp1rl 1239 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ (ℂ ↑m0))
19 simp1rr 1240 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ (ℂ ↑m0))
20 simp2l 1200 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
21 simp2r 1201 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
22 simp3ll 1245 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑛 + 1))) = {0})
23 simp3rl 1247 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑚 + 1))) = {0})
24 simp3lr 1246 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
25 oveq1 7397 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2625oveq2d 7406 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2726sumeq2sdv 15676 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
28 fveq2 6861 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
29 oveq2 7398 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
3028, 29oveq12d 7408 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
3130cbvsumv 15669 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))
3227, 31eqtrdi 2781 . . . . . . . . 9 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
3332cbvmptv 5214 . . . . . . . 8 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
3424, 33eqtrdi 2781 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
35 simp3rr 1248 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))
3625oveq2d 7406 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3736sumeq2sdv 15676 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑤𝑘)))
38 fveq2 6861 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3938, 29oveq12d 7408 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
4039cbvsumv 15669 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗))
4137, 40eqtrdi 2781 . . . . . . . . 9 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗)))
4241cbvmptv 5214 . . . . . . . 8 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗)))
4335, 42eqtrdi 2781 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗))))
4417, 18, 19, 20, 21, 22, 23, 34, 43coeeulem 26136 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 = 𝑏)
45443expia 1121 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4645rexlimdvva 3195 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) → (∃𝑛 ∈ ℕ0𝑚 ∈ ℕ0 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4716, 46biimtrrid 243 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) → ((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4847ralrimivva 3181 . 2 (𝐹 ∈ (Poly‘𝑆) → ∀𝑎 ∈ (ℂ ↑m0)∀𝑏 ∈ (ℂ ↑m0)((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
49 imaeq1 6029 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 “ (ℤ‘(𝑛 + 1))) = (𝑏 “ (ℤ‘(𝑛 + 1))))
5049eqeq1d 2732 . . . . . 6 (𝑎 = 𝑏 → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝑏 “ (ℤ‘(𝑛 + 1))) = {0}))
51 fveq1 6860 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎𝑘) = (𝑏𝑘))
5251oveq1d 7405 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑧𝑘)))
5352sumeq2sdv 15676 . . . . . . . 8 (𝑎 = 𝑏 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))
5453mpteq2dv 5204 . . . . . . 7 (𝑎 = 𝑏 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
5554eqeq2d 2741 . . . . . 6 (𝑎 = 𝑏 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
5650, 55anbi12d 632 . . . . 5 (𝑎 = 𝑏 → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
5756rexbidv 3158 . . . 4 (𝑎 = 𝑏 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
58 fvoveq1 7413 . . . . . . . 8 (𝑛 = 𝑚 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑚 + 1)))
5958imaeq2d 6034 . . . . . . 7 (𝑛 = 𝑚 → (𝑏 “ (ℤ‘(𝑛 + 1))) = (𝑏 “ (ℤ‘(𝑚 + 1))))
6059eqeq1d 2732 . . . . . 6 (𝑛 = 𝑚 → ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝑏 “ (ℤ‘(𝑚 + 1))) = {0}))
61 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
6261sumeq1d 15673 . . . . . . . 8 (𝑛 = 𝑚 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))
6362mpteq2dv 5204 . . . . . . 7 (𝑛 = 𝑚 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))
6463eqeq2d 2741 . . . . . 6 (𝑛 = 𝑚 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))
6560, 64anbi12d 632 . . . . 5 (𝑛 = 𝑚 → (((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))) ↔ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
6665cbvrexvw 3217 . . . 4 (∃𝑛 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))) ↔ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))
6757, 66bitrdi 287 . . 3 (𝑎 = 𝑏 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
6867reu4 3705 . 2 (∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∀𝑎 ∈ (ℂ ↑m0)∀𝑏 ∈ (ℂ ↑m0)((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏)))
6915, 48, 68sylanbrc 583 1 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  cun 3915  wss 3917  {csn 4592  cmpt 5191  cima 5644  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  0cn0 12449  cuz 12800  ...cfz 13475  cexp 14033  Σcsu 15659  Polycply 26096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100
This theorem is referenced by:  coelem  26138  coeeq  26139
  Copyright terms: Public domain W3C validator