MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeu Structured version   Visualization version   GIF version

Theorem coeeu 26146
Description: Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
coeeu (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Distinct variable groups:   𝑧,𝑘   𝑛,𝑎,𝐹   𝑆,𝑎,𝑛   𝑘,𝑎,𝑧,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeu
Dummy variables 𝑏 𝑗 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26121 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3933 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 elply2 26117 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) ↔ (ℂ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
43simprbi 496 . . . . 5 (𝐹 ∈ (Poly‘ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
5 rexcom 3258 . . . . 5 (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
64, 5sylib 218 . . . 4 (𝐹 ∈ (Poly‘ℂ) → ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
72, 6syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
8 0cn 11126 . . . . . . 7 0 ∈ ℂ
9 snssi 4762 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
108, 9ax-mp 5 . . . . . 6 {0} ⊆ ℂ
11 ssequn2 4142 . . . . . 6 ({0} ⊆ ℂ ↔ (ℂ ∪ {0}) = ℂ)
1210, 11mpbi 230 . . . . 5 (ℂ ∪ {0}) = ℂ
1312oveq1i 7363 . . . 4 ((ℂ ∪ {0}) ↑m0) = (ℂ ↑m0)
1413rexeqi 3289 . . 3 (∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
157, 14sylib 218 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
16 reeanv 3201 . . . 4 (∃𝑛 ∈ ℕ0𝑚 ∈ ℕ0 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
17 simp1l 1198 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
18 simp1rl 1239 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ (ℂ ↑m0))
19 simp1rr 1240 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ (ℂ ↑m0))
20 simp2l 1200 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
21 simp2r 1201 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
22 simp3ll 1245 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑛 + 1))) = {0})
23 simp3rl 1247 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑚 + 1))) = {0})
24 simp3lr 1246 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
25 oveq1 7360 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2625oveq2d 7369 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2726sumeq2sdv 15628 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
28 fveq2 6826 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
29 oveq2 7361 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
3028, 29oveq12d 7371 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
3130cbvsumv 15621 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))
3227, 31eqtrdi 2780 . . . . . . . . 9 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
3332cbvmptv 5199 . . . . . . . 8 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
3424, 33eqtrdi 2780 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
35 simp3rr 1248 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))
3625oveq2d 7369 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3736sumeq2sdv 15628 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑤𝑘)))
38 fveq2 6826 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3938, 29oveq12d 7371 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
4039cbvsumv 15621 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗))
4137, 40eqtrdi 2780 . . . . . . . . 9 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗)))
4241cbvmptv 5199 . . . . . . . 8 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗)))
4335, 42eqtrdi 2780 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗))))
4417, 18, 19, 20, 21, 22, 23, 34, 43coeeulem 26145 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 = 𝑏)
45443expia 1121 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4645rexlimdvva 3186 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) → (∃𝑛 ∈ ℕ0𝑚 ∈ ℕ0 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4716, 46biimtrrid 243 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) → ((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4847ralrimivva 3172 . 2 (𝐹 ∈ (Poly‘𝑆) → ∀𝑎 ∈ (ℂ ↑m0)∀𝑏 ∈ (ℂ ↑m0)((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
49 imaeq1 6010 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 “ (ℤ‘(𝑛 + 1))) = (𝑏 “ (ℤ‘(𝑛 + 1))))
5049eqeq1d 2731 . . . . . 6 (𝑎 = 𝑏 → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝑏 “ (ℤ‘(𝑛 + 1))) = {0}))
51 fveq1 6825 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎𝑘) = (𝑏𝑘))
5251oveq1d 7368 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑧𝑘)))
5352sumeq2sdv 15628 . . . . . . . 8 (𝑎 = 𝑏 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))
5453mpteq2dv 5189 . . . . . . 7 (𝑎 = 𝑏 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
5554eqeq2d 2740 . . . . . 6 (𝑎 = 𝑏 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
5650, 55anbi12d 632 . . . . 5 (𝑎 = 𝑏 → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
5756rexbidv 3153 . . . 4 (𝑎 = 𝑏 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
58 fvoveq1 7376 . . . . . . . 8 (𝑛 = 𝑚 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑚 + 1)))
5958imaeq2d 6015 . . . . . . 7 (𝑛 = 𝑚 → (𝑏 “ (ℤ‘(𝑛 + 1))) = (𝑏 “ (ℤ‘(𝑚 + 1))))
6059eqeq1d 2731 . . . . . 6 (𝑛 = 𝑚 → ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝑏 “ (ℤ‘(𝑚 + 1))) = {0}))
61 oveq2 7361 . . . . . . . . 9 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
6261sumeq1d 15625 . . . . . . . 8 (𝑛 = 𝑚 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))
6362mpteq2dv 5189 . . . . . . 7 (𝑛 = 𝑚 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))
6463eqeq2d 2740 . . . . . 6 (𝑛 = 𝑚 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))
6560, 64anbi12d 632 . . . . 5 (𝑛 = 𝑚 → (((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))) ↔ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
6665cbvrexvw 3208 . . . 4 (∃𝑛 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))) ↔ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))
6757, 66bitrdi 287 . . 3 (𝑎 = 𝑏 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
6867reu4 3693 . 2 (∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∀𝑎 ∈ (ℂ ↑m0)∀𝑏 ∈ (ℂ ↑m0)((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏)))
6915, 48, 68sylanbrc 583 1 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3343  cun 3903  wss 3905  {csn 4579  cmpt 5176  cima 5626  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  0cn0 12402  cuz 12753  ...cfz 13428  cexp 13986  Σcsu 15611  Polycply 26105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109
This theorem is referenced by:  coelem  26147  coeeq  26148
  Copyright terms: Public domain W3C validator