MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeu Structured version   Visualization version   GIF version

Theorem coeeu 26158
Description: Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
coeeu (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Distinct variable groups:   𝑧,𝑘   𝑛,𝑎,𝐹   𝑆,𝑎,𝑛   𝑘,𝑎,𝑧,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeu
Dummy variables 𝑏 𝑗 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26133 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3926 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 elply2 26129 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) ↔ (ℂ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
43simprbi 496 . . . . 5 (𝐹 ∈ (Poly‘ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
5 rexcom 3262 . . . . 5 (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℂ ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
64, 5sylib 218 . . . 4 (𝐹 ∈ (Poly‘ℂ) → ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
72, 6syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
8 0cn 11111 . . . . . . 7 0 ∈ ℂ
9 snssi 4759 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
108, 9ax-mp 5 . . . . . 6 {0} ⊆ ℂ
11 ssequn2 4138 . . . . . 6 ({0} ⊆ ℂ ↔ (ℂ ∪ {0}) = ℂ)
1210, 11mpbi 230 . . . . 5 (ℂ ∪ {0}) = ℂ
1312oveq1i 7362 . . . 4 ((ℂ ∪ {0}) ↑m0) = (ℂ ↑m0)
1413rexeqi 3292 . . 3 (∃𝑎 ∈ ((ℂ ∪ {0}) ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
157, 14sylib 218 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
16 reeanv 3205 . . . 4 (∃𝑛 ∈ ℕ0𝑚 ∈ ℕ0 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
17 simp1l 1198 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
18 simp1rl 1239 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ (ℂ ↑m0))
19 simp1rr 1240 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ (ℂ ↑m0))
20 simp2l 1200 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
21 simp2r 1201 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
22 simp3ll 1245 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑛 + 1))) = {0})
23 simp3rl 1247 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑚 + 1))) = {0})
24 simp3lr 1246 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
25 oveq1 7359 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2625oveq2d 7368 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2726sumeq2sdv 15612 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
28 fveq2 6828 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
29 oveq2 7360 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
3028, 29oveq12d 7370 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
3130cbvsumv 15605 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))
3227, 31eqtrdi 2784 . . . . . . . . 9 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
3332cbvmptv 5197 . . . . . . . 8 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
3424, 33eqtrdi 2784 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
35 simp3rr 1248 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))
3625oveq2d 7368 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3736sumeq2sdv 15612 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑤𝑘)))
38 fveq2 6828 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3938, 29oveq12d 7370 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
4039cbvsumv 15605 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗))
4137, 40eqtrdi 2784 . . . . . . . . 9 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗)))
4241cbvmptv 5197 . . . . . . . 8 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗)))
4335, 42eqtrdi 2784 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑏𝑗) · (𝑤𝑗))))
4417, 18, 19, 20, 21, 22, 23, 34, 43coeeulem 26157 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 = 𝑏)
45443expia 1121 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → ((((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4645rexlimdvva 3190 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) → (∃𝑛 ∈ ℕ0𝑚 ∈ ℕ0 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4716, 46biimtrrid 243 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑎 ∈ (ℂ ↑m0) ∧ 𝑏 ∈ (ℂ ↑m0))) → ((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
4847ralrimivva 3176 . 2 (𝐹 ∈ (Poly‘𝑆) → ∀𝑎 ∈ (ℂ ↑m0)∀𝑏 ∈ (ℂ ↑m0)((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏))
49 imaeq1 6008 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 “ (ℤ‘(𝑛 + 1))) = (𝑏 “ (ℤ‘(𝑛 + 1))))
5049eqeq1d 2735 . . . . . 6 (𝑎 = 𝑏 → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝑏 “ (ℤ‘(𝑛 + 1))) = {0}))
51 fveq1 6827 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎𝑘) = (𝑏𝑘))
5251oveq1d 7367 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑧𝑘)))
5352sumeq2sdv 15612 . . . . . . . 8 (𝑎 = 𝑏 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))
5453mpteq2dv 5187 . . . . . . 7 (𝑎 = 𝑏 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
5554eqeq2d 2744 . . . . . 6 (𝑎 = 𝑏 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
5650, 55anbi12d 632 . . . . 5 (𝑎 = 𝑏 → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
5756rexbidv 3157 . . . 4 (𝑎 = 𝑏 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
58 fvoveq1 7375 . . . . . . . 8 (𝑛 = 𝑚 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑚 + 1)))
5958imaeq2d 6013 . . . . . . 7 (𝑛 = 𝑚 → (𝑏 “ (ℤ‘(𝑛 + 1))) = (𝑏 “ (ℤ‘(𝑚 + 1))))
6059eqeq1d 2735 . . . . . 6 (𝑛 = 𝑚 → ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ↔ (𝑏 “ (ℤ‘(𝑚 + 1))) = {0}))
61 oveq2 7360 . . . . . . . . 9 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
6261sumeq1d 15609 . . . . . . . 8 (𝑛 = 𝑚 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))
6362mpteq2dv 5187 . . . . . . 7 (𝑛 = 𝑚 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))
6463eqeq2d 2744 . . . . . 6 (𝑛 = 𝑚 → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))
6560, 64anbi12d 632 . . . . 5 (𝑛 = 𝑚 → (((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))) ↔ ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
6665cbvrexvw 3212 . . . 4 (∃𝑛 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))) ↔ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘)))))
6757, 66bitrdi 287 . . 3 (𝑎 = 𝑏 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))))
6867reu4 3686 . 2 (∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (∃𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∀𝑎 ∈ (ℂ ↑m0)∀𝑏 ∈ (ℂ ↑m0)((∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑚 ∈ ℕ0 ((𝑏 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑏𝑘) · (𝑧𝑘))))) → 𝑎 = 𝑏)))
6915, 48, 68sylanbrc 583 1 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  ∃!wreu 3345  cun 3896  wss 3898  {csn 4575  cmpt 5174  cima 5622  cfv 6486  (class class class)co 7352  m cmap 8756  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  0cn0 12388  cuz 12738  ...cfz 13409  cexp 13970  Σcsu 15595  Polycply 26117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-0p 25599  df-ply 26121
This theorem is referenced by:  coelem  26159  coeeq  26160
  Copyright terms: Public domain W3C validator