MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunlem2 Structured version   Visualization version   GIF version

Theorem ovolunlem2 24099
Description: Lemma for ovolun 24100. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovolun.a (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
ovolun.b (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
ovolun.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ovolunlem2 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))

Proof of Theorem ovolunlem2
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolun.a . . . 4 (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
21simpld 497 . . 3 (𝜑𝐴 ⊆ ℝ)
31simprd 498 . . 3 (𝜑 → (vol*‘𝐴) ∈ ℝ)
4 ovolun.c . . . 4 (𝜑𝐶 ∈ ℝ+)
54rphalfcld 12444 . . 3 (𝜑 → (𝐶 / 2) ∈ ℝ+)
6 eqid 2821 . . . 4 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
76ovolgelb 24081 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))))
82, 3, 5, 7syl3anc 1367 . 2 (𝜑 → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))))
9 ovolun.b . . . 4 (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
109simpld 497 . . 3 (𝜑𝐵 ⊆ ℝ)
119simprd 498 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ)
12 eqid 2821 . . . 4 seq1( + , ((abs ∘ − ) ∘ )) = seq1( + , ((abs ∘ − ) ∘ ))
1312ovolgelb 24081 . . 3 ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ+) → ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))
1410, 11, 5, 13syl3anc 1367 . 2 (𝜑 → ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))
15 reeanv 3367 . . 3 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))))
1613ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
1793ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
1843ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐶 ∈ ℝ+)
19 eqid 2821 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))))) = seq1( + , ((abs ∘ − ) ∘ (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2))))))
20 simp2l 1195 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
21 simp3ll 1240 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐴 ran ((,) ∘ 𝑔))
22 simp3lr 1241 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2)))
23 simp2r 1196 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
24 simp3rl 1242 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐵 ran ((,) ∘ ))
25 simp3rr 1243 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))
26 eqid 2821 . . . . . 6 (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))) = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2))))
2716, 17, 18, 6, 12, 19, 20, 21, 22, 23, 24, 25, 26ovolunlem1 24098 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
28273exp 1115 . . . 4 (𝜑 → ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))))
2928rexlimdvv 3293 . . 3 (𝜑 → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
3015, 29syl5bir 245 . 2 (𝜑 → ((∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
318, 14, 30mp2and 697 1 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wrex 3139  cun 3934  cin 3935  wss 3936  ifcif 4467   cuni 4838   class class class wbr 5066  cmpt 5146   × cxp 5553  ran crn 5556  ccom 5559  cfv 6355  (class class class)co 7156  m cmap 8406  supcsup 8904  cr 10536  1c1 10538   + caddc 10540  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  +crp 12390  (,)cioo 12739  seqcseq 13370  abscabs 14593  vol*covol 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ioo 12743  df-ico 12745  df-fz 12894  df-fl 13163  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-ovol 24065
This theorem is referenced by:  ovolun  24100
  Copyright terms: Public domain W3C validator