MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunlem2 Structured version   Visualization version   GIF version

Theorem ovolunlem2 24567
Description: Lemma for ovolun 24568. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovolun.a (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
ovolun.b (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
ovolun.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ovolunlem2 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))

Proof of Theorem ovolunlem2
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolun.a . . . 4 (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
21simpld 494 . . 3 (𝜑𝐴 ⊆ ℝ)
31simprd 495 . . 3 (𝜑 → (vol*‘𝐴) ∈ ℝ)
4 ovolun.c . . . 4 (𝜑𝐶 ∈ ℝ+)
54rphalfcld 12713 . . 3 (𝜑 → (𝐶 / 2) ∈ ℝ+)
6 eqid 2738 . . . 4 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
76ovolgelb 24549 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))))
82, 3, 5, 7syl3anc 1369 . 2 (𝜑 → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))))
9 ovolun.b . . . 4 (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
109simpld 494 . . 3 (𝜑𝐵 ⊆ ℝ)
119simprd 495 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ)
12 eqid 2738 . . . 4 seq1( + , ((abs ∘ − ) ∘ )) = seq1( + , ((abs ∘ − ) ∘ ))
1312ovolgelb 24549 . . 3 ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ+) → ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))
1410, 11, 5, 13syl3anc 1369 . 2 (𝜑 → ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))
15 reeanv 3292 . . 3 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))))
1613ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
1793ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
1843ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐶 ∈ ℝ+)
19 eqid 2738 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))))) = seq1( + , ((abs ∘ − ) ∘ (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2))))))
20 simp2l 1197 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
21 simp3ll 1242 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐴 ran ((,) ∘ 𝑔))
22 simp3lr 1243 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2)))
23 simp2r 1198 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
24 simp3rl 1244 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐵 ran ((,) ∘ ))
25 simp3rr 1245 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))
26 eqid 2738 . . . . . 6 (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))) = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2))))
2716, 17, 18, 6, 12, 19, 20, 21, 22, 23, 24, 25, 26ovolunlem1 24566 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
28273exp 1117 . . . 4 (𝜑 → ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))))
2928rexlimdvv 3221 . . 3 (𝜑 → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
3015, 29syl5bir 242 . 2 (𝜑 → ((∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
318, 14, 30mp2and 695 1 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wrex 3064  cun 3881  cin 3882  wss 3883  ifcif 4456   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584  cfv 6418  (class class class)co 7255  m cmap 8573  supcsup 9129  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  +crp 12659  (,)cioo 13008  seqcseq 13649  abscabs 14873  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-ovol 24533
This theorem is referenced by:  ovolun  24568
  Copyright terms: Public domain W3C validator