Step | Hyp | Ref
| Expression |
1 | | ovolun.a |
. . . 4
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
2 | 1 | simpld 494 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
3 | 1 | simprd 495 |
. . 3
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
4 | | ovolun.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
5 | 4 | rphalfcld 12713 |
. . 3
⊢ (𝜑 → (𝐶 / 2) ∈
ℝ+) |
6 | | eqid 2738 |
. . . 4
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − )
∘ 𝑔)) |
7 | 6 | ovolgelb 24549 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ (𝐶 / 2)
∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2)))) |
8 | 2, 3, 5, 7 | syl3anc 1369 |
. 2
⊢ (𝜑 → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2)))) |
9 | | ovolun.b |
. . . 4
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
10 | 9 | simpld 494 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
11 | 9 | simprd 495 |
. . 3
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ) |
12 | | eqid 2738 |
. . . 4
⊢ seq1( + ,
((abs ∘ − ) ∘ ℎ)) = seq1( + , ((abs ∘ − ) ∘
ℎ)) |
13 | 12 | ovolgelb 24549 |
. . 3
⊢ ((𝐵 ⊆ ℝ ∧
(vol*‘𝐵) ∈
ℝ ∧ (𝐶 / 2)
∈ ℝ+) → ∃ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) |
14 | 10, 11, 5, 13 | syl3anc 1369 |
. 2
⊢ (𝜑 → ∃ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) |
15 | | reeanv 3292 |
. . 3
⊢
(∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)∃ℎ ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ℎ ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) |
16 | 1 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → (𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ)) |
17 | 9 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → (𝐵 ⊆ ℝ ∧
(vol*‘𝐵) ∈
ℝ)) |
18 | 4 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → 𝐶 ∈
ℝ+) |
19 | | eqid 2738 |
. . . . . 6
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (ℎ‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))))) = seq1( + , ((abs ∘
− ) ∘ (𝑛 ∈
ℕ ↦ if((𝑛 / 2)
∈ ℕ, (ℎ‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))))) |
20 | | simp2l 1197 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → 𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)) |
21 | | simp3ll 1242 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑔)) |
22 | | simp3lr 1243 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( +
, ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) |
23 | | simp2r 1198 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → ℎ ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)) |
24 | | simp3rl 1244 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → 𝐵 ⊆ ∪ ran ((,) ∘ ℎ)) |
25 | | simp3rr 1245 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( +
, ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))) |
26 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
if((𝑛 / 2) ∈ ℕ,
(ℎ‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))) = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (ℎ‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))) |
27 | 16, 17, 18, 6, 12, 19, 20, 21, 22, 23, 24, 25, 26 | ovolunlem1 24566 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) ∧ ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))))) →
(vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
28 | 27 | 3exp 1117 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) →
(vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))) |
29 | 28 | rexlimdvv 3221 |
. . 3
⊢ (𝜑 → (∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)∃ℎ ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) →
(vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
30 | 15, 29 | syl5bir 242 |
. 2
⊢ (𝜑 → ((∃𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ℎ ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran
((,) ∘ ℎ) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ ℎ)), ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) →
(vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
31 | 8, 14, 30 | mp2and 695 |
1
⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |