MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunlem2 Structured version   Visualization version   GIF version

Theorem ovolunlem2 24102
Description: Lemma for ovolun 24103. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovolun.a (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
ovolun.b (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
ovolun.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ovolunlem2 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))

Proof of Theorem ovolunlem2
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolun.a . . . 4 (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
21simpld 498 . . 3 (𝜑𝐴 ⊆ ℝ)
31simprd 499 . . 3 (𝜑 → (vol*‘𝐴) ∈ ℝ)
4 ovolun.c . . . 4 (𝜑𝐶 ∈ ℝ+)
54rphalfcld 12431 . . 3 (𝜑 → (𝐶 / 2) ∈ ℝ+)
6 eqid 2798 . . . 4 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
76ovolgelb 24084 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))))
82, 3, 5, 7syl3anc 1368 . 2 (𝜑 → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))))
9 ovolun.b . . . 4 (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
109simpld 498 . . 3 (𝜑𝐵 ⊆ ℝ)
119simprd 499 . . 3 (𝜑 → (vol*‘𝐵) ∈ ℝ)
12 eqid 2798 . . . 4 seq1( + , ((abs ∘ − ) ∘ )) = seq1( + , ((abs ∘ − ) ∘ ))
1312ovolgelb 24084 . . 3 ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ+) → ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))
1410, 11, 5, 13syl3anc 1368 . 2 (𝜑 → ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))
15 reeanv 3320 . . 3 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) ↔ (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))))
1613ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
1793ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
1843ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐶 ∈ ℝ+)
19 eqid 2798 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))))) = seq1( + , ((abs ∘ − ) ∘ (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2))))))
20 simp2l 1196 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
21 simp3ll 1241 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐴 ran ((,) ∘ 𝑔))
22 simp3lr 1242 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2)))
23 simp2r 1197 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
24 simp3rl 1243 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → 𝐵 ran ((,) ∘ ))
25 simp3rr 1244 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))
26 eqid 2798 . . . . . 6 (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2)))) = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (‘(𝑛 / 2)), (𝑔‘((𝑛 + 1) / 2))))
2716, 17, 18, 6, 12, 19, 20, 21, 22, 23, 24, 25, 26ovolunlem1 24101 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
28273exp 1116 . . . 4 (𝜑 → ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))))
2928rexlimdvv 3252 . . 3 (𝜑 → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ (𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
3015, 29syl5bir 246 . 2 (𝜑 → ((∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) ∧ ∃ ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ )), ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
318, 14, 30mp2and 698 1 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wcel 2111  wrex 3107  cun 3879  cin 3880  wss 3881  ifcif 4425   cuni 4800   class class class wbr 5030  cmpt 5110   × cxp 5517  ran crn 5520  ccom 5523  cfv 6324  (class class class)co 7135  m cmap 8389  supcsup 8888  cr 10525  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  +crp 12377  (,)cioo 12726  seqcseq 13364  abscabs 14585  vol*covol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ioo 12730  df-ico 12732  df-fz 12886  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-ovol 24068
This theorem is referenced by:  ovolun  24103
  Copyright terms: Public domain W3C validator