Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlema2N Structured version   Visualization version   GIF version

Theorem cdlema2N 37047
Description: A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlema2.b 𝐵 = (Base‘𝐾)
cdlema2.l = (le‘𝐾)
cdlema2.j = (join‘𝐾)
cdlema2.m = (meet‘𝐾)
cdlema2.z 0 = (0.‘𝐾)
cdlema2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlema2N (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → (𝑅 𝑋) = 0 )

Proof of Theorem cdlema2N
StepHypRef Expression
1 simp3ll 1241 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → 𝑅𝑃)
2 simp3rl 1243 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → 𝑃 𝑋)
3 simp3rr 1244 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → ¬ 𝑄 𝑋)
4 simp3lr 1242 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → 𝑅 (𝑃 𝑄))
52, 3, 43jca 1125 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄)))
6 cdlema2.b . . . . . 6 𝐵 = (Base‘𝐾)
7 cdlema2.l . . . . . 6 = (le‘𝐾)
8 cdlema2.j . . . . . 6 = (join‘𝐾)
9 cdlema2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
106, 7, 8, 9exatleN 36659 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 (𝑃 𝑄))) → (𝑅 𝑋𝑅 = 𝑃))
115, 10syld3an3 1406 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → (𝑅 𝑋𝑅 = 𝑃))
1211necon3bbid 3048 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → (¬ 𝑅 𝑋𝑅𝑃))
131, 12mpbird 260 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → ¬ 𝑅 𝑋)
14 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → 𝐾 ∈ HL)
15 hlatl 36615 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1614, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → 𝐾 ∈ AtLat)
17 simp23 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → 𝑅𝐴)
18 simp1r 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → 𝑋𝐵)
19 cdlema2.m . . . 4 = (meet‘𝐾)
20 cdlema2.z . . . 4 0 = (0.‘𝐾)
216, 7, 19, 20, 9atnle 36572 . . 3 ((𝐾 ∈ AtLat ∧ 𝑅𝐴𝑋𝐵) → (¬ 𝑅 𝑋 ↔ (𝑅 𝑋) = 0 ))
2216, 17, 18, 21syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → (¬ 𝑅 𝑋 ↔ (𝑅 𝑋) = 0 ))
2313, 22mpbid 235 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋))) → (𝑅 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011   class class class wbr 5042  cfv 6334  (class class class)co 7140  Basecbs 16474  lecple 16563  joincjn 17545  meetcmee 17546  0.cp0 17638  Atomscatm 36518  AtLatcal 36519  HLchlt 36605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-lat 17647  df-covers 36521  df-ats 36522  df-atl 36553  df-cvlat 36577  df-hlat 36606
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator