Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihlsscpre Structured version   Visualization version   GIF version

Theorem dihlsscpre 40834
Description: Closure of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊. (Contributed by NM, 6-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihlsscpre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem dihlsscpre
Dummy variables 𝑞 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihval.b . . 3 𝐵 = (Base‘𝐾)
2 dihval.l . . 3 = (le‘𝐾)
3 dihval.j . . 3 = (join‘𝐾)
4 dihval.m . . 3 = (meet‘𝐾)
5 dihval.a . . 3 𝐴 = (Atoms‘𝐾)
6 dihval.h . . 3 𝐻 = (LHyp‘𝐾)
7 dihval.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . 3 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . 3 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . 3 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . 3 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihvalc 40833 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
14 simp1l 1194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp2l 1196 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
16 simp3ll 1241 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
1715, 16jca 510 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
18 simp2r 1197 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑟𝐴)
19 simp3rl 1243 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑟 𝑊)
2018, 19jca 510 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
21 simp1rl 1235 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑋𝐵)
22 simp3lr 1242 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
23 simp3rr 1244 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑟 (𝑋 𝑊)) = 𝑋)
2422, 23eqtr4d 2768 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊)))
251, 2, 3, 4, 5, 6, 8, 9, 10, 12dihjust 40817 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑋𝐵) ∧ (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊))) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
2614, 17, 20, 21, 24, 25syl131anc 1380 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
27263exp 1116 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝑞𝐴𝑟𝐴) → (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))))
2827ralrimivv 3188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))))
291, 2, 3, 4, 5, 6lhpmcvr2 39624 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
30 simpll 765 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
316, 10, 30dvhlmod 40710 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑈 ∈ LMod)
322, 5, 6, 10, 9, 11diclss 40793 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐶𝑞) ∈ 𝑆)
3332adantlr 713 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐶𝑞) ∈ 𝑆)
34 hllat 38962 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3534ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐾 ∈ Lat)
36 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑋𝐵)
371, 6lhpbase 39598 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
3837ad3antlr 729 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑊𝐵)
391, 4latmcl 18435 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
4035, 36, 38, 39syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
411, 2, 4latmle2 18460 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
4235, 36, 38, 41syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑋 𝑊) 𝑊)
431, 2, 6, 10, 8, 11diblss 40770 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝐷‘(𝑋 𝑊)) ∈ 𝑆)
4430, 40, 42, 43syl12anc 835 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐷‘(𝑋 𝑊)) ∈ 𝑆)
4511, 12lsmcl 20980 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ (𝐶𝑞) ∈ 𝑆 ∧ (𝐷‘(𝑋 𝑊)) ∈ 𝑆) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)
4631, 33, 44, 45syl3anc 1368 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)
4746a1d 25 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
4847expr 455 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → (¬ 𝑞 𝑊 → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
4948impd 409 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
5049ancld 549 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
5150reximdva 3157 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
5229, 51mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
53 breq1 5152 . . . . . . . . 9 (𝑞 = 𝑟 → (𝑞 𝑊𝑟 𝑊))
5453notbid 317 . . . . . . . 8 (𝑞 = 𝑟 → (¬ 𝑞 𝑊 ↔ ¬ 𝑟 𝑊))
55 oveq1 7426 . . . . . . . . 9 (𝑞 = 𝑟 → (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊)))
5655eqeq1d 2727 . . . . . . . 8 (𝑞 = 𝑟 → ((𝑞 (𝑋 𝑊)) = 𝑋 ↔ (𝑟 (𝑋 𝑊)) = 𝑋))
5754, 56anbi12d 630 . . . . . . 7 (𝑞 = 𝑟 → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ↔ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)))
58 fveq2 6896 . . . . . . . 8 (𝑞 = 𝑟 → (𝐶𝑞) = (𝐶𝑟))
5958oveq1d 7434 . . . . . . 7 (𝑞 = 𝑟 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
6057, 59reusv3 5405 . . . . . 6 (∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆) → (∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6152, 60syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6228, 61mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
63 reusv1 5397 . . . . 5 (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6429, 63syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6562, 64mpbird 256 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
66 riotacl 7393 . . 3 (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ 𝑆)
6765, 66syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ 𝑆)
6813, 67eqeltrd 2825 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  ∃!wreu 3361   class class class wbr 5149  cfv 6549  crio 7374  (class class class)co 7419  Basecbs 17183  lecple 17243  joincjn 18306  meetcmee 18307  Latclat 18426  LSSumclsm 19601  LModclmod 20755  LSubSpclss 20827  Atomscatm 38862  HLchlt 38949  LHypclh 39584  DVecHcdvh 40678  DIsoBcdib 40738  DIsoCcdic 40772  DIsoHcdih 40828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-riotaBAD 38552
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-oposet 38775  df-ol 38777  df-oml 38778  df-covers 38865  df-ats 38866  df-atl 38897  df-cvlat 38921  df-hlat 38950  df-llines 39098  df-lplanes 39099  df-lvols 39100  df-lines 39101  df-psubsp 39103  df-pmap 39104  df-padd 39396  df-lhyp 39588  df-laut 39589  df-ldil 39704  df-ltrn 39705  df-trl 39759  df-tendo 40355  df-edring 40357  df-disoa 40629  df-dvech 40679  df-dib 40739  df-dic 40773  df-dih 40829
This theorem is referenced by:  dihvalcqpre  40835  dihlss  40850
  Copyright terms: Public domain W3C validator