Step | Hyp | Ref
| Expression |
1 | | dihval.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | dihval.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | dihval.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | dihval.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | | dihval.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | dihval.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | dihval.i |
. . 3
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
8 | | dihval.d |
. . 3
⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
9 | | dihval.c |
. . 3
⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
10 | | dihval.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
11 | | dihval.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑈) |
12 | | dihval.p |
. . 3
⊢ ⊕ =
(LSSum‘𝑈) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | dihvalc 39247 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
14 | | simp1l 1196 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | | simp2l 1198 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑞 ∈ 𝐴) |
16 | | simp3ll 1243 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑞 ≤ 𝑊) |
17 | 15, 16 | jca 512 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) |
18 | | simp2r 1199 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑟 ∈ 𝐴) |
19 | | simp3rl 1245 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑟 ≤ 𝑊) |
20 | 18, 19 | jca 512 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊)) |
21 | | simp1rl 1237 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑋 ∈ 𝐵) |
22 | | simp3lr 1244 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
23 | | simp3rr 1246 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
24 | 22, 23 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑟 ∨ (𝑋 ∧ 𝑊))) |
25 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 | dihjust 39231 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑟 ∨ (𝑋 ∧ 𝑊))) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
26 | 14, 17, 20, 21, 24, 25 | syl131anc 1382 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
27 | 26 | 3exp 1118 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
28 | 27 | ralrimivv 3122 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) |
29 | 1, 2, 3, 4, 5, 6 | lhpmcvr2 38038 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
30 | | simpll 764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
31 | 6, 10, 30 | dvhlmod 39124 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑈 ∈ LMod) |
32 | 2, 5, 6, 10, 9, 11 | diclss 39207 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐶‘𝑞) ∈ 𝑆) |
33 | 32 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐶‘𝑞) ∈ 𝑆) |
34 | | hllat 37377 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
35 | 34 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝐾 ∈ Lat) |
36 | | simplrl 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
37 | 1, 6 | lhpbase 38012 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
38 | 37 | ad3antlr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
39 | 1, 4 | latmcl 18158 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
40 | 35, 36, 38, 39 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
41 | 1, 2, 4 | latmle2 18183 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
42 | 35, 36, 38, 41 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
43 | 1, 2, 6, 10, 8, 11 | diblss 39184 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (𝐷‘(𝑋 ∧ 𝑊)) ∈ 𝑆) |
44 | 30, 40, 42, 43 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐷‘(𝑋 ∧ 𝑊)) ∈ 𝑆) |
45 | 11, 12 | lsmcl 20345 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ LMod ∧ (𝐶‘𝑞) ∈ 𝑆 ∧ (𝐷‘(𝑋 ∧ 𝑊)) ∈ 𝑆) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆) |
46 | 31, 33, 44, 45 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆) |
47 | 46 | a1d 25 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋 → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆)) |
48 | 47 | expr 457 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞 ≤ 𝑊 → ((𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋 → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆))) |
49 | 48 | impd 411 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆)) |
50 | 49 | ancld 551 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆))) |
51 | 50 | reximdva 3203 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ∃𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆))) |
52 | 29, 51 | mpd 15 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆)) |
53 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑞 = 𝑟 → (𝑞 ≤ 𝑊 ↔ 𝑟 ≤ 𝑊)) |
54 | 53 | notbid 318 |
. . . . . . . 8
⊢ (𝑞 = 𝑟 → (¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑟 ≤ 𝑊)) |
55 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑞 = 𝑟 → (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑟 ∨ (𝑋 ∧ 𝑊))) |
56 | 55 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑞 = 𝑟 → ((𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ↔ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
57 | 54, 56 | anbi12d 631 |
. . . . . . 7
⊢ (𝑞 = 𝑟 → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ↔ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
58 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑞 = 𝑟 → (𝐶‘𝑞) = (𝐶‘𝑟)) |
59 | 58 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑞 = 𝑟 → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
60 | 57, 59 | reusv3 5328 |
. . . . . 6
⊢
(∃𝑞 ∈
𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆) → (∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
61 | 52, 60 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
62 | 28, 61 | mpbid 231 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) |
63 | | reusv1 5320 |
. . . . 5
⊢
(∃𝑞 ∈
𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (∃!𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
64 | 29, 63 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (∃!𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
65 | 62, 64 | mpbird 256 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃!𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) |
66 | | riotacl 7250 |
. . 3
⊢
(∃!𝑢 ∈
𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) → (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) ∈ 𝑆) |
67 | 65, 66 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) ∈ 𝑆) |
68 | 13, 67 | eqeltrd 2839 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) |