| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dihval.b | . . 3
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | dihval.l | . . 3
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | dihval.j | . . 3
⊢  ∨ =
(join‘𝐾) | 
| 4 |  | dihval.m | . . 3
⊢  ∧ =
(meet‘𝐾) | 
| 5 |  | dihval.a | . . 3
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 |  | dihval.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |  | dihval.i | . . 3
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | 
| 8 |  | dihval.d | . . 3
⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | 
| 9 |  | dihval.c | . . 3
⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) | 
| 10 |  | dihval.u | . . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 11 |  | dihval.s | . . 3
⊢ 𝑆 = (LSubSp‘𝑈) | 
| 12 |  | dihval.p | . . 3
⊢  ⊕ =
(LSSum‘𝑈) | 
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | dihvalc 41236 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | 
| 14 |  | simp1l 1197 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 15 |  | simp2l 1199 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑞 ∈ 𝐴) | 
| 16 |  | simp3ll 1244 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑞 ≤ 𝑊) | 
| 17 | 15, 16 | jca 511 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) | 
| 18 |  | simp2r 1200 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑟 ∈ 𝐴) | 
| 19 |  | simp3rl 1246 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑟 ≤ 𝑊) | 
| 20 | 18, 19 | jca 511 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊)) | 
| 21 |  | simp1rl 1238 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑋 ∈ 𝐵) | 
| 22 |  | simp3lr 1245 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) | 
| 23 |  | simp3rr 1247 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋) | 
| 24 | 22, 23 | eqtr4d 2779 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑟 ∨ (𝑋 ∧ 𝑊))) | 
| 25 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 | dihjust 41220 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑟 ∨ (𝑋 ∧ 𝑊))) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) | 
| 26 | 14, 17, 20, 21, 24, 25 | syl131anc 1384 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) | 
| 27 | 26 | 3exp 1119 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | 
| 28 | 27 | ralrimivv 3199 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) | 
| 29 | 1, 2, 3, 4, 5, 6 | lhpmcvr2 40027 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) | 
| 30 |  | simpll 766 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 31 | 6, 10, 30 | dvhlmod 41113 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑈 ∈ LMod) | 
| 32 | 2, 5, 6, 10, 9, 11 | diclss 41196 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐶‘𝑞) ∈ 𝑆) | 
| 33 | 32 | adantlr 715 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐶‘𝑞) ∈ 𝑆) | 
| 34 |  | hllat 39365 | . . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 35 | 34 | ad3antrrr 730 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝐾 ∈ Lat) | 
| 36 |  | simplrl 776 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | 
| 37 | 1, 6 | lhpbase 40001 | . . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) | 
| 38 | 37 | ad3antlr 731 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑊 ∈ 𝐵) | 
| 39 | 1, 4 | latmcl 18486 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) | 
| 40 | 35, 36, 38, 39 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ∈ 𝐵) | 
| 41 | 1, 2, 4 | latmle2 18511 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) | 
| 42 | 35, 36, 38, 41 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ≤ 𝑊) | 
| 43 | 1, 2, 6, 10, 8, 11 | diblss 41173 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (𝐷‘(𝑋 ∧ 𝑊)) ∈ 𝑆) | 
| 44 | 30, 40, 42, 43 | syl12anc 836 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐷‘(𝑋 ∧ 𝑊)) ∈ 𝑆) | 
| 45 | 11, 12 | lsmcl 21083 | . . . . . . . . . . . . 13
⊢ ((𝑈 ∈ LMod ∧ (𝐶‘𝑞) ∈ 𝑆 ∧ (𝐷‘(𝑋 ∧ 𝑊)) ∈ 𝑆) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆) | 
| 46 | 31, 33, 44, 45 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆) | 
| 47 | 46 | a1d 25 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋 → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆)) | 
| 48 | 47 | expr 456 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞 ≤ 𝑊 → ((𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋 → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆))) | 
| 49 | 48 | impd 410 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆)) | 
| 50 | 49 | ancld 550 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆))) | 
| 51 | 50 | reximdva 3167 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ∃𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆))) | 
| 52 | 29, 51 | mpd 15 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆)) | 
| 53 |  | breq1 5145 | . . . . . . . . 9
⊢ (𝑞 = 𝑟 → (𝑞 ≤ 𝑊 ↔ 𝑟 ≤ 𝑊)) | 
| 54 | 53 | notbid 318 | . . . . . . . 8
⊢ (𝑞 = 𝑟 → (¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑟 ≤ 𝑊)) | 
| 55 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑞 = 𝑟 → (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑟 ∨ (𝑋 ∧ 𝑊))) | 
| 56 | 55 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑞 = 𝑟 → ((𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ↔ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) | 
| 57 | 54, 56 | anbi12d 632 | . . . . . . 7
⊢ (𝑞 = 𝑟 → ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ↔ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) | 
| 58 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑞 = 𝑟 → (𝐶‘𝑞) = (𝐶‘𝑟)) | 
| 59 | 58 | oveq1d 7447 | . . . . . . 7
⊢ (𝑞 = 𝑟 → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) | 
| 60 | 57, 59 | reusv3 5404 | . . . . . 6
⊢
(∃𝑞 ∈
𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ∈ 𝑆) → (∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | 
| 61 | 52, 60 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑟) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | 
| 62 | 28, 61 | mpbid 232 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) | 
| 63 |  | reusv1 5396 | . . . . 5
⊢
(∃𝑞 ∈
𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (∃!𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | 
| 64 | 29, 63 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (∃!𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) ↔ ∃𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | 
| 65 | 62, 64 | mpbird 257 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃!𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) | 
| 66 |  | riotacl 7406 | . . 3
⊢
(∃!𝑢 ∈
𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) → (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) ∈ 𝑆) | 
| 67 | 65, 66 | syl 17 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) ∈ 𝑆) | 
| 68 | 13, 67 | eqeltrd 2840 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) |