Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihlsscpre Structured version   Visualization version   GIF version

Theorem dihlsscpre 41191
Description: Closure of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊. (Contributed by NM, 6-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihlsscpre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem dihlsscpre
Dummy variables 𝑞 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihval.b . . 3 𝐵 = (Base‘𝐾)
2 dihval.l . . 3 = (le‘𝐾)
3 dihval.j . . 3 = (join‘𝐾)
4 dihval.m . . 3 = (meet‘𝐾)
5 dihval.a . . 3 𝐴 = (Atoms‘𝐾)
6 dihval.h . . 3 𝐻 = (LHyp‘𝐾)
7 dihval.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . 3 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . 3 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . 3 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . 3 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihvalc 41190 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
14 simp1l 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp2l 1199 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
16 simp3ll 1244 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
1715, 16jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
18 simp2r 1200 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑟𝐴)
19 simp3rl 1246 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑟 𝑊)
2018, 19jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
21 simp1rl 1238 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑋𝐵)
22 simp3lr 1245 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
23 simp3rr 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑟 (𝑋 𝑊)) = 𝑋)
2422, 23eqtr4d 2783 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊)))
251, 2, 3, 4, 5, 6, 8, 9, 10, 12dihjust 41174 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑋𝐵) ∧ (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊))) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
2614, 17, 20, 21, 24, 25syl131anc 1383 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
27263exp 1119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝑞𝐴𝑟𝐴) → (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))))
2827ralrimivv 3206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))))
291, 2, 3, 4, 5, 6lhpmcvr2 39981 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
30 simpll 766 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
316, 10, 30dvhlmod 41067 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑈 ∈ LMod)
322, 5, 6, 10, 9, 11diclss 41150 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐶𝑞) ∈ 𝑆)
3332adantlr 714 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐶𝑞) ∈ 𝑆)
34 hllat 39319 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3534ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐾 ∈ Lat)
36 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑋𝐵)
371, 6lhpbase 39955 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
3837ad3antlr 730 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑊𝐵)
391, 4latmcl 18510 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
4035, 36, 38, 39syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
411, 2, 4latmle2 18535 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
4235, 36, 38, 41syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑋 𝑊) 𝑊)
431, 2, 6, 10, 8, 11diblss 41127 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝐷‘(𝑋 𝑊)) ∈ 𝑆)
4430, 40, 42, 43syl12anc 836 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐷‘(𝑋 𝑊)) ∈ 𝑆)
4511, 12lsmcl 21105 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ (𝐶𝑞) ∈ 𝑆 ∧ (𝐷‘(𝑋 𝑊)) ∈ 𝑆) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)
4631, 33, 44, 45syl3anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)
4746a1d 25 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
4847expr 456 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → (¬ 𝑞 𝑊 → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
4948impd 410 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
5049ancld 550 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
5150reximdva 3174 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
5229, 51mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
53 breq1 5169 . . . . . . . . 9 (𝑞 = 𝑟 → (𝑞 𝑊𝑟 𝑊))
5453notbid 318 . . . . . . . 8 (𝑞 = 𝑟 → (¬ 𝑞 𝑊 ↔ ¬ 𝑟 𝑊))
55 oveq1 7455 . . . . . . . . 9 (𝑞 = 𝑟 → (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊)))
5655eqeq1d 2742 . . . . . . . 8 (𝑞 = 𝑟 → ((𝑞 (𝑋 𝑊)) = 𝑋 ↔ (𝑟 (𝑋 𝑊)) = 𝑋))
5754, 56anbi12d 631 . . . . . . 7 (𝑞 = 𝑟 → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ↔ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)))
58 fveq2 6920 . . . . . . . 8 (𝑞 = 𝑟 → (𝐶𝑞) = (𝐶𝑟))
5958oveq1d 7463 . . . . . . 7 (𝑞 = 𝑟 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
6057, 59reusv3 5423 . . . . . 6 (∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆) → (∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6152, 60syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6228, 61mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
63 reusv1 5415 . . . . 5 (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6429, 63syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6562, 64mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
66 riotacl 7422 . . 3 (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ 𝑆)
6765, 66syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ 𝑆)
6813, 67eqeltrd 2844 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386   class class class wbr 5166  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  LSSumclsm 19676  LModclmod 20880  LSubSpclss 20952  Atomscatm 39219  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  DIsoBcdib 41095  DIsoCcdic 41129  DIsoHcdih 41185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712  df-edring 40714  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186
This theorem is referenced by:  dihvalcqpre  41192  dihlss  41207
  Copyright terms: Public domain W3C validator