Step | Hyp | Ref
| Expression |
1 | | tgqioo.1 |
. 2
⊢ 𝑄 = (topGen‘((,) “
(ℚ × ℚ))) |
2 | | imassrn 5980 |
. . 3
⊢ ((,)
“ (ℚ × ℚ)) ⊆ ran (,) |
3 | | ioof 13179 |
. . . . . 6
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
4 | | ffn 6600 |
. . . . . 6
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
5 | 3, 4 | ax-mp 5 |
. . . . 5
⊢ (,) Fn
(ℝ* × ℝ*) |
6 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 ∈ ℝ*) |
7 | | elioo1 13119 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑧 ∈ (𝑥(,)𝑦) ↔ (𝑧 ∈ ℝ* ∧ 𝑥 < 𝑧 ∧ 𝑧 < 𝑦))) |
8 | 7 | biimpa 477 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (𝑧 ∈ ℝ* ∧ 𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) |
9 | 8 | simp1d 1141 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 ∈ ℝ*) |
10 | 8 | simp2d 1142 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 < 𝑧) |
11 | | qbtwnxr 12934 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ*
∧ 𝑧 ∈
ℝ* ∧ 𝑥
< 𝑧) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧)) |
12 | 6, 9, 10, 11 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧)) |
13 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑦 ∈ ℝ*) |
14 | 8 | simp3d 1143 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 < 𝑦) |
15 | | qbtwnxr 12934 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ 𝑧
< 𝑦) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) |
16 | 9, 13, 14, 15 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) |
17 | | reeanv 3294 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
ℚ ∃𝑣 ∈
ℚ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) ↔ (∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) |
18 | | df-ov 7278 |
. . . . . . . . . . . . . 14
⊢ (𝑢(,)𝑣) = ((,)‘〈𝑢, 𝑣〉) |
19 | | opelxpi 5626 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) →
〈𝑢, 𝑣〉 ∈ (ℚ ×
ℚ)) |
20 | 19 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 〈𝑢, 𝑣〉 ∈ (ℚ ×
ℚ)) |
21 | | ffun 6603 |
. . . . . . . . . . . . . . . . 17
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → Fun (,)) |
22 | 3, 21 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ Fun
(,) |
23 | | qssre 12699 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℚ
⊆ ℝ |
24 | | ressxr 11019 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℝ
⊆ ℝ* |
25 | 23, 24 | sstri 3930 |
. . . . . . . . . . . . . . . . . 18
⊢ ℚ
⊆ ℝ* |
26 | | xpss12 5604 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℚ
⊆ ℝ* ∧ ℚ ⊆ ℝ*) →
(ℚ × ℚ) ⊆ (ℝ* ×
ℝ*)) |
27 | 25, 25, 26 | mp2an 689 |
. . . . . . . . . . . . . . . . 17
⊢ (ℚ
× ℚ) ⊆ (ℝ* ×
ℝ*) |
28 | 3 | fdmi 6612 |
. . . . . . . . . . . . . . . . 17
⊢ dom (,) =
(ℝ* × ℝ*) |
29 | 27, 28 | sseqtrri 3958 |
. . . . . . . . . . . . . . . 16
⊢ (ℚ
× ℚ) ⊆ dom (,) |
30 | | funfvima2 7107 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun (,)
∧ (ℚ × ℚ) ⊆ dom (,)) → (〈𝑢, 𝑣〉 ∈ (ℚ × ℚ)
→ ((,)‘〈𝑢,
𝑣〉) ∈ ((,)
“ (ℚ × ℚ)))) |
31 | 22, 29, 30 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑢, 𝑣〉 ∈ (ℚ ×
ℚ) → ((,)‘〈𝑢, 𝑣〉) ∈ ((,) “ (ℚ ×
ℚ))) |
32 | 20, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → ((,)‘〈𝑢, 𝑣〉) ∈ ((,) “ (ℚ ×
ℚ))) |
33 | 18, 32 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑢(,)𝑣) ∈ ((,) “ (ℚ ×
ℚ))) |
34 | 9 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑧 ∈ ℝ*) |
35 | | simp3lr 1244 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑢 < 𝑧) |
36 | | simp3rl 1245 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑧 < 𝑣) |
37 | | simp2l 1198 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑢 ∈ ℚ) |
38 | 25, 37 | sselid 3919 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑢 ∈ ℝ*) |
39 | | simp2r 1199 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 ∈ ℚ) |
40 | 25, 39 | sselid 3919 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 ∈ ℝ*) |
41 | | elioo1 13119 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ℝ*
∧ 𝑣 ∈
ℝ*) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ* ∧ 𝑢 < 𝑧 ∧ 𝑧 < 𝑣))) |
42 | 38, 40, 41 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ* ∧ 𝑢 < 𝑧 ∧ 𝑧 < 𝑣))) |
43 | 34, 35, 36, 42 | mpbir3and 1341 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑧 ∈ (𝑢(,)𝑣)) |
44 | 6 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑥 ∈ ℝ*) |
45 | | simp3ll 1243 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑥 < 𝑢) |
46 | 44, 38, 45 | xrltled 12884 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑥 ≤ 𝑢) |
47 | | iooss1 13114 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 ≤ 𝑢) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣)) |
48 | 44, 46, 47 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣)) |
49 | 13 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑦 ∈ ℝ*) |
50 | | simp3rr 1246 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 < 𝑦) |
51 | 40, 49, 50 | xrltled 12884 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → 𝑣 ≤ 𝑦) |
52 | | iooss2 13115 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ*
∧ 𝑣 ≤ 𝑦) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦)) |
53 | 49, 51, 52 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦)) |
54 | 48, 53 | sstrd 3931 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)) |
55 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑢(,)𝑣) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑢(,)𝑣))) |
56 | | sseq1 3946 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑢(,)𝑣) → (𝑤 ⊆ (𝑥(,)𝑦) ↔ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) |
57 | 55, 56 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑢(,)𝑣) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)) ↔ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)))) |
58 | 57 | rspcev 3561 |
. . . . . . . . . . . . 13
⊢ (((𝑢(,)𝑣) ∈ ((,) “ (ℚ ×
ℚ)) ∧ (𝑧 ∈
(𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) |
59 | 33, 43, 54, 58 | syl12anc 834 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) |
60 | 59 | 3exp 1118 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → (((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))))) |
61 | 60 | rexlimdvv 3222 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)))) |
62 | 17, 61 | syl5bir 242 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((∃𝑢 ∈ ℚ (𝑥 < 𝑢 ∧ 𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣 ∧ 𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)))) |
63 | 12, 16, 62 | mp2and 696 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) |
64 | 63 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) |
65 | | qtopbas 23923 |
. . . . . . . 8
⊢ ((,)
“ (ℚ × ℚ)) ∈ TopBases |
66 | | eltg2b 22109 |
. . . . . . . 8
⊢ (((,)
“ (ℚ × ℚ)) ∈ TopBases → ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦)))) |
67 | 65, 66 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ ×
ℚ))(𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥(,)𝑦))) |
68 | 64, 67 | sylibr 233 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ)))) |
69 | 68 | rgen2 3120 |
. . . . 5
⊢
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))) |
70 | | ffnov 7401 |
. . . . 5
⊢
((,):(ℝ* ×
ℝ*)⟶(topGen‘((,) “ (ℚ ×
ℚ))) ↔ ((,) Fn (ℝ* × ℝ*)
∧ ∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ
× ℚ))))) |
71 | 5, 69, 70 | mpbir2an 708 |
. . . 4
⊢
(,):(ℝ* ×
ℝ*)⟶(topGen‘((,) “ (ℚ ×
ℚ))) |
72 | | frn 6607 |
. . . 4
⊢
((,):(ℝ* ×
ℝ*)⟶(topGen‘((,) “ (ℚ ×
ℚ))) → ran (,) ⊆ (topGen‘((,) “ (ℚ ×
ℚ)))) |
73 | 71, 72 | ax-mp 5 |
. . 3
⊢ ran (,)
⊆ (topGen‘((,) “ (ℚ × ℚ))) |
74 | | 2basgen 22140 |
. . 3
⊢ ((((,)
“ (ℚ × ℚ)) ⊆ ran (,) ∧ ran (,) ⊆
(topGen‘((,) “ (ℚ × ℚ)))) →
(topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran
(,))) |
75 | 2, 73, 74 | mp2an 689 |
. 2
⊢
(topGen‘((,) “ (ℚ × ℚ))) =
(topGen‘ran (,)) |
76 | 1, 75 | eqtr2i 2767 |
1
⊢
(topGen‘ran (,)) = 𝑄 |