Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smoiun | Structured version Visualization version GIF version |
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
Ref | Expression |
---|---|
smoiun | ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4925 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥)) | |
2 | smofvon 8161 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | |
3 | smoel 8162 | . . . . . 6 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐵‘𝑥) ∈ (𝐵‘𝐴)) | |
4 | 3 | 3expia 1119 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝐵‘𝑥) ∈ (𝐵‘𝐴))) |
5 | ontr1 6297 | . . . . . 6 ⊢ ((𝐵‘𝐴) ∈ On → ((𝑦 ∈ (𝐵‘𝑥) ∧ (𝐵‘𝑥) ∈ (𝐵‘𝐴)) → 𝑦 ∈ (𝐵‘𝐴))) | |
6 | 5 | expcomd 416 | . . . . 5 ⊢ ((𝐵‘𝐴) ∈ On → ((𝐵‘𝑥) ∈ (𝐵‘𝐴) → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
7 | 2, 4, 6 | sylsyld 61 | . . . 4 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
8 | 7 | rexlimdv 3211 | . . 3 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
9 | 1, 8 | syl5bi 241 | . 2 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
10 | 9 | ssrdv 3923 | 1 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ∪ ciun 4921 dom cdm 5580 Oncon0 6251 ‘cfv 6418 Smo wsmo 8147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-smo 8148 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |