| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smoiun | Structured version Visualization version GIF version | ||
| Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
| Ref | Expression |
|---|---|
| smoiun | ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4945 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥)) | |
| 2 | smofvon 8279 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | |
| 3 | smoel 8280 | . . . . . 6 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐵‘𝑥) ∈ (𝐵‘𝐴)) | |
| 4 | 3 | 3expia 1121 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝐵‘𝑥) ∈ (𝐵‘𝐴))) |
| 5 | ontr1 6353 | . . . . . 6 ⊢ ((𝐵‘𝐴) ∈ On → ((𝑦 ∈ (𝐵‘𝑥) ∧ (𝐵‘𝑥) ∈ (𝐵‘𝐴)) → 𝑦 ∈ (𝐵‘𝐴))) | |
| 6 | 5 | expcomd 416 | . . . . 5 ⊢ ((𝐵‘𝐴) ∈ On → ((𝐵‘𝑥) ∈ (𝐵‘𝐴) → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
| 7 | 2, 4, 6 | sylsyld 61 | . . . 4 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
| 8 | 7 | rexlimdv 3131 | . . 3 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
| 9 | 1, 8 | biimtrid 242 | . 2 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
| 10 | 9 | ssrdv 3940 | 1 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 ∪ ciun 4941 dom cdm 5616 Oncon0 6306 ‘cfv 6481 Smo wsmo 8265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-tr 5199 df-id 5511 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-smo 8266 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |