![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smoiun | Structured version Visualization version GIF version |
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
Ref | Expression |
---|---|
smoiun | ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4994 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥)) | |
2 | smofvon 8357 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | |
3 | smoel 8358 | . . . . . 6 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐵‘𝑥) ∈ (𝐵‘𝐴)) | |
4 | 3 | 3expia 1118 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝐵‘𝑥) ∈ (𝐵‘𝐴))) |
5 | ontr1 6403 | . . . . . 6 ⊢ ((𝐵‘𝐴) ∈ On → ((𝑦 ∈ (𝐵‘𝑥) ∧ (𝐵‘𝑥) ∈ (𝐵‘𝐴)) → 𝑦 ∈ (𝐵‘𝐴))) | |
6 | 5 | expcomd 416 | . . . . 5 ⊢ ((𝐵‘𝐴) ∈ On → ((𝐵‘𝑥) ∈ (𝐵‘𝐴) → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
7 | 2, 4, 6 | sylsyld 61 | . . . 4 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
8 | 7 | rexlimdv 3147 | . . 3 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
9 | 1, 8 | biimtrid 241 | . 2 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
10 | 9 | ssrdv 3983 | 1 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∃wrex 3064 ⊆ wss 3943 ∪ ciun 4990 dom cdm 5669 Oncon0 6357 ‘cfv 6536 Smo wsmo 8343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-tr 5259 df-id 5567 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-ord 6360 df-on 6361 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-smo 8344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |