MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiun Structured version   Visualization version   GIF version

Theorem smoiun 7981
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoiun ((Smo 𝐵𝐴 ∈ dom 𝐵) → 𝑥𝐴 (𝐵𝑥) ⊆ (𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem smoiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4904 . . 3 (𝑦 𝑥𝐴 (𝐵𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝑥))
2 smofvon 7979 . . . . 5 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐵𝐴) ∈ On)
3 smoel 7980 . . . . . 6 ((Smo 𝐵𝐴 ∈ dom 𝐵𝑥𝐴) → (𝐵𝑥) ∈ (𝐵𝐴))
433expia 1118 . . . . 5 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝑥𝐴 → (𝐵𝑥) ∈ (𝐵𝐴)))
5 ontr1 6218 . . . . . 6 ((𝐵𝐴) ∈ On → ((𝑦 ∈ (𝐵𝑥) ∧ (𝐵𝑥) ∈ (𝐵𝐴)) → 𝑦 ∈ (𝐵𝐴)))
65expcomd 420 . . . . 5 ((𝐵𝐴) ∈ On → ((𝐵𝑥) ∈ (𝐵𝐴) → (𝑦 ∈ (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴))))
72, 4, 6sylsyld 61 . . . 4 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝑥𝐴 → (𝑦 ∈ (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴))))
87rexlimdv 3275 . . 3 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (∃𝑥𝐴 𝑦 ∈ (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴)))
91, 8syl5bi 245 . 2 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝑦 𝑥𝐴 (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴)))
109ssrdv 3957 1 ((Smo 𝐵𝐴 ∈ dom 𝐵) → 𝑥𝐴 (𝐵𝑥) ⊆ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  wrex 3133  wss 3918   ciun 4900  dom cdm 5536  Oncon0 6172  cfv 6336  Smo wsmo 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-tr 5154  df-id 5441  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-ord 6175  df-on 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-smo 7966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator