| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smoiun | Structured version Visualization version GIF version | ||
| Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
| Ref | Expression |
|---|---|
| smoiun | ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4995 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥)) | |
| 2 | smofvon 8399 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | |
| 3 | smoel 8400 | . . . . . 6 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐵‘𝑥) ∈ (𝐵‘𝐴)) | |
| 4 | 3 | 3expia 1122 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝐵‘𝑥) ∈ (𝐵‘𝐴))) |
| 5 | ontr1 6430 | . . . . . 6 ⊢ ((𝐵‘𝐴) ∈ On → ((𝑦 ∈ (𝐵‘𝑥) ∧ (𝐵‘𝑥) ∈ (𝐵‘𝐴)) → 𝑦 ∈ (𝐵‘𝐴))) | |
| 6 | 5 | expcomd 416 | . . . . 5 ⊢ ((𝐵‘𝐴) ∈ On → ((𝐵‘𝑥) ∈ (𝐵‘𝐴) → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
| 7 | 2, 4, 6 | sylsyld 61 | . . . 4 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
| 8 | 7 | rexlimdv 3153 | . . 3 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
| 9 | 1, 8 | biimtrid 242 | . 2 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
| 10 | 9 | ssrdv 3989 | 1 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 ∪ ciun 4991 dom cdm 5685 Oncon0 6384 ‘cfv 6561 Smo wsmo 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-tr 5260 df-id 5578 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-ord 6387 df-on 6388 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-smo 8386 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |