MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s111 Structured version   Visualization version   GIF version

Theorem s111 14654
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s111 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))

Proof of Theorem s111
StepHypRef Expression
1 s1val 14637 . . 3 (𝑆𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
2 s1val 14637 . . 3 (𝑇𝐴 → ⟨“𝑇”⟩ = {⟨0, 𝑇⟩})
31, 2eqeqan12d 2750 . 2 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ {⟨0, 𝑆⟩} = {⟨0, 𝑇⟩}))
4 opex 5468 . . 3 ⟨0, 𝑆⟩ ∈ V
5 sneqbg 4842 . . 3 (⟨0, 𝑆⟩ ∈ V → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
64, 5mp1i 13 . 2 ((𝑆𝐴𝑇𝐴) → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
7 0z 12626 . . . 4 0 ∈ ℤ
8 eqid 2736 . . . . 5 0 = 0
9 opthg 5481 . . . . . 6 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ (0 = 0 ∧ 𝑆 = 𝑇)))
109baibd 539 . . . . 5 (((0 ∈ ℤ ∧ 𝑆𝐴) ∧ 0 = 0) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
118, 10mpan2 691 . . . 4 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
127, 11mpan 690 . . 3 (𝑆𝐴 → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
1312adantr 480 . 2 ((𝑆𝐴𝑇𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
143, 6, 133bitrd 305 1 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  {csn 4625  cop 4631  0cc0 11156  cz 12615  ⟨“cs1 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-1cn 11214  ax-addrcl 11217  ax-rnegex 11227  ax-cnre 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-neg 11496  df-z 12616  df-s1 14635
This theorem is referenced by:  ccats1alpha  14658  pfxsuff1eqwrdeq  14738  s2eq2seq  14977  s3eq3seq  14979  2swrd2eqwrdeq  14993  efgredlemc  19764  mvhf1  35565
  Copyright terms: Public domain W3C validator