![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s111 | Structured version Visualization version GIF version |
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s111 | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14544 | . . 3 ⊢ (𝑆 ∈ 𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩}) | |
2 | s1val 14544 | . . 3 ⊢ (𝑇 ∈ 𝐴 → ⟨“𝑇”⟩ = {⟨0, 𝑇⟩}) | |
3 | 1, 2 | eqeqan12d 2746 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ {⟨0, 𝑆⟩} = {⟨0, 𝑇⟩})) |
4 | opex 5463 | . . 3 ⊢ ⟨0, 𝑆⟩ ∈ V | |
5 | sneqbg 4843 | . . 3 ⊢ (⟨0, 𝑆⟩ ∈ V → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩)) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩)) |
7 | 0z 12565 | . . . 4 ⊢ 0 ∈ ℤ | |
8 | eqid 2732 | . . . . 5 ⊢ 0 = 0 | |
9 | opthg 5476 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ (0 = 0 ∧ 𝑆 = 𝑇))) | |
10 | 9 | baibd 540 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) ∧ 0 = 0) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇)) |
11 | 8, 10 | mpan2 689 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇)) |
12 | 7, 11 | mpan 688 | . . 3 ⊢ (𝑆 ∈ 𝐴 → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇)) |
13 | 12 | adantr 481 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇)) |
14 | 3, 6, 13 | 3bitrd 304 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 ⟨cop 4633 0cc0 11106 ℤcz 12554 ⟨“cs1 14541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-1cn 11164 ax-addrcl 11167 ax-rnegex 11177 ax-cnre 11179 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-neg 11443 df-z 12555 df-s1 14542 |
This theorem is referenced by: ccats1alpha 14565 pfxsuff1eqwrdeq 14645 s2eq2seq 14884 s3eq3seq 14886 2swrd2eqwrdeq 14900 efgredlemc 19607 mvhf1 34538 |
Copyright terms: Public domain | W3C validator |