MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s111 Structured version   Visualization version   GIF version

Theorem s111 14650
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s111 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))

Proof of Theorem s111
StepHypRef Expression
1 s1val 14633 . . 3 (𝑆𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
2 s1val 14633 . . 3 (𝑇𝐴 → ⟨“𝑇”⟩ = {⟨0, 𝑇⟩})
31, 2eqeqan12d 2749 . 2 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ {⟨0, 𝑆⟩} = {⟨0, 𝑇⟩}))
4 opex 5475 . . 3 ⟨0, 𝑆⟩ ∈ V
5 sneqbg 4848 . . 3 (⟨0, 𝑆⟩ ∈ V → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
64, 5mp1i 13 . 2 ((𝑆𝐴𝑇𝐴) → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
7 0z 12622 . . . 4 0 ∈ ℤ
8 eqid 2735 . . . . 5 0 = 0
9 opthg 5488 . . . . . 6 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ (0 = 0 ∧ 𝑆 = 𝑇)))
109baibd 539 . . . . 5 (((0 ∈ ℤ ∧ 𝑆𝐴) ∧ 0 = 0) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
118, 10mpan2 691 . . . 4 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
127, 11mpan 690 . . 3 (𝑆𝐴 → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
1312adantr 480 . 2 ((𝑆𝐴𝑇𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
143, 6, 133bitrd 305 1 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  0cc0 11153  cz 12611  ⟨“cs1 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-1cn 11211  ax-addrcl 11214  ax-rnegex 11224  ax-cnre 11226
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-neg 11493  df-z 12612  df-s1 14631
This theorem is referenced by:  ccats1alpha  14654  pfxsuff1eqwrdeq  14734  s2eq2seq  14973  s3eq3seq  14975  2swrd2eqwrdeq  14989  efgredlemc  19778  mvhf1  35544
  Copyright terms: Public domain W3C validator