![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s111 | Structured version Visualization version GIF version |
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s111 | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14633 | . . 3 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
2 | s1val 14633 | . . 3 ⊢ (𝑇 ∈ 𝐴 → 〈“𝑇”〉 = {〈0, 𝑇〉}) | |
3 | 1, 2 | eqeqan12d 2749 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ {〈0, 𝑆〉} = {〈0, 𝑇〉})) |
4 | opex 5475 | . . 3 ⊢ 〈0, 𝑆〉 ∈ V | |
5 | sneqbg 4848 | . . 3 ⊢ (〈0, 𝑆〉 ∈ V → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) |
7 | 0z 12622 | . . . 4 ⊢ 0 ∈ ℤ | |
8 | eqid 2735 | . . . . 5 ⊢ 0 = 0 | |
9 | opthg 5488 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ (0 = 0 ∧ 𝑆 = 𝑇))) | |
10 | 9 | baibd 539 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) ∧ 0 = 0) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
11 | 8, 10 | mpan2 691 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
12 | 7, 11 | mpan 690 | . . 3 ⊢ (𝑆 ∈ 𝐴 → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
13 | 12 | adantr 480 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
14 | 3, 6, 13 | 3bitrd 305 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 0cc0 11153 ℤcz 12611 〈“cs1 14630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-neg 11493 df-z 12612 df-s1 14631 |
This theorem is referenced by: ccats1alpha 14654 pfxsuff1eqwrdeq 14734 s2eq2seq 14973 s3eq3seq 14975 2swrd2eqwrdeq 14989 efgredlemc 19778 mvhf1 35544 |
Copyright terms: Public domain | W3C validator |