Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s111 | Structured version Visualization version GIF version |
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s111 | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14303 | . . 3 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
2 | s1val 14303 | . . 3 ⊢ (𝑇 ∈ 𝐴 → 〈“𝑇”〉 = {〈0, 𝑇〉}) | |
3 | 1, 2 | eqeqan12d 2752 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ {〈0, 𝑆〉} = {〈0, 𝑇〉})) |
4 | opex 5379 | . . 3 ⊢ 〈0, 𝑆〉 ∈ V | |
5 | sneqbg 4774 | . . 3 ⊢ (〈0, 𝑆〉 ∈ V → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) |
7 | 0z 12330 | . . . 4 ⊢ 0 ∈ ℤ | |
8 | eqid 2738 | . . . . 5 ⊢ 0 = 0 | |
9 | opthg 5392 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ (0 = 0 ∧ 𝑆 = 𝑇))) | |
10 | 9 | baibd 540 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) ∧ 0 = 0) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
11 | 8, 10 | mpan2 688 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
12 | 7, 11 | mpan 687 | . . 3 ⊢ (𝑆 ∈ 𝐴 → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
13 | 12 | adantr 481 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
14 | 3, 6, 13 | 3bitrd 305 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 0cc0 10871 ℤcz 12319 〈“cs1 14300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 df-s1 14301 |
This theorem is referenced by: ccats1alpha 14324 pfxsuff1eqwrdeq 14412 s2eq2seq 14650 s3eq3seq 14652 2swrd2eqwrdeq 14666 efgredlemc 19351 mvhf1 33521 |
Copyright terms: Public domain | W3C validator |