|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > s111 | Structured version Visualization version GIF version | ||
| Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) | 
| Ref | Expression | 
|---|---|
| s111 | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | s1val 14637 | . . 3 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | s1val 14637 | . . 3 ⊢ (𝑇 ∈ 𝐴 → 〈“𝑇”〉 = {〈0, 𝑇〉}) | |
| 3 | 1, 2 | eqeqan12d 2750 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ {〈0, 𝑆〉} = {〈0, 𝑇〉})) | 
| 4 | opex 5468 | . . 3 ⊢ 〈0, 𝑆〉 ∈ V | |
| 5 | sneqbg 4842 | . . 3 ⊢ (〈0, 𝑆〉 ∈ V → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) | |
| 6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) | 
| 7 | 0z 12626 | . . . 4 ⊢ 0 ∈ ℤ | |
| 8 | eqid 2736 | . . . . 5 ⊢ 0 = 0 | |
| 9 | opthg 5481 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ (0 = 0 ∧ 𝑆 = 𝑇))) | |
| 10 | 9 | baibd 539 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) ∧ 0 = 0) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) | 
| 11 | 8, 10 | mpan2 691 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) | 
| 12 | 7, 11 | mpan 690 | . . 3 ⊢ (𝑆 ∈ 𝐴 → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) | 
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) | 
| 14 | 3, 6, 13 | 3bitrd 305 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 {csn 4625 〈cop 4631 0cc0 11156 ℤcz 12615 〈“cs1 14634 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-1cn 11214 ax-addrcl 11217 ax-rnegex 11227 ax-cnre 11229 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-neg 11496 df-z 12616 df-s1 14635 | 
| This theorem is referenced by: ccats1alpha 14658 pfxsuff1eqwrdeq 14738 s2eq2seq 14977 s3eq3seq 14979 2swrd2eqwrdeq 14993 efgredlemc 19764 mvhf1 35565 | 
| Copyright terms: Public domain | W3C validator |