MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  embedsetcestrclem Structured version   Visualization version   GIF version

Theorem embedsetcestrclem 18094
Description: Lemma for embedsetcestrc 18104. (Contributed by AV, 31-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrclem3.e 𝐸 = (ExtStrCat‘𝑈)
funcsetcestrclem3.b 𝐵 = (Base‘𝐸)
Assertion
Ref Expression
embedsetcestrclem (𝜑𝐹:𝐶1-1𝐵)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐹(𝑥)

Proof of Theorem embedsetcestrclem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrclem3.e . . 3 𝐸 = (ExtStrCat‘𝑈)
7 funcsetcestrclem3.b . . 3 𝐵 = (Base‘𝐸)
81, 2, 3, 4, 5, 6, 7funcsetcestrclem3 18093 . 2 (𝜑𝐹:𝐶𝐵)
91, 2, 3funcsetcestrclem1 18091 . . . . . 6 ((𝜑𝑦𝐶) → (𝐹𝑦) = {⟨(Base‘ndx), 𝑦⟩})
109adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (𝐹𝑦) = {⟨(Base‘ndx), 𝑦⟩})
111, 2, 3funcsetcestrclem1 18091 . . . . . 6 ((𝜑𝑧𝐶) → (𝐹𝑧) = {⟨(Base‘ndx), 𝑧⟩})
1211adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (𝐹𝑧) = {⟨(Base‘ndx), 𝑧⟩})
1310, 12eqeq12d 2745 . . . 4 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ((𝐹𝑦) = (𝐹𝑧) ↔ {⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩}))
14 opex 5419 . . . . . 6 ⟨(Base‘ndx), 𝑦⟩ ∈ V
15 sneqbg 4803 . . . . . 6 (⟨(Base‘ndx), 𝑦⟩ ∈ V → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} ↔ ⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩))
1614, 15mp1i 13 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} ↔ ⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩))
17 fvexd 6855 . . . . . . 7 (𝜑 → (Base‘ndx) ∈ V)
18 simpl 482 . . . . . . 7 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
19 opthg 5432 . . . . . . 7 (((Base‘ndx) ∈ V ∧ 𝑦𝐶) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧)))
2017, 18, 19syl2an 596 . . . . . 6 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧)))
21 simpr 484 . . . . . 6 (((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)
2220, 21biimtrdi 253 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ → 𝑦 = 𝑧))
2316, 22sylbid 240 . . . 4 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} → 𝑦 = 𝑧))
2413, 23sylbid 240 . . 3 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
2524ralrimivva 3178 . 2 (𝜑 → ∀𝑦𝐶𝑧𝐶 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
26 dff13 7211 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ ∀𝑦𝐶𝑧𝐶 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
278, 25, 26sylanbrc 583 1 (𝜑𝐹:𝐶1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  {csn 4585  cop 4591  cmpt 5183  wf 6495  1-1wf1 6496  cfv 6499  ωcom 7822  WUnicwun 10629  ndxcnx 17139  Basecbs 17155  SetCatcsetc 18013  ExtStrCatcestrc 18059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-wun 10631  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847  df-np 10910  df-plp 10912  df-ltp 10914  df-enr 10984  df-nr 10985  df-c 11050  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-setc 18014  df-estrc 18060
This theorem is referenced by:  embedsetcestrc  18104
  Copyright terms: Public domain W3C validator