![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embedsetcestrclem | Structured version Visualization version GIF version |
Description: Lemma for embedsetcestrc 18157. (Contributed by AV, 31-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | β’ π = (SetCatβπ) |
funcsetcestrc.c | β’ πΆ = (Baseβπ) |
funcsetcestrc.f | β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) |
funcsetcestrc.u | β’ (π β π β WUni) |
funcsetcestrc.o | β’ (π β Ο β π) |
funcsetcestrclem3.e | β’ πΈ = (ExtStrCatβπ) |
funcsetcestrclem3.b | β’ π΅ = (BaseβπΈ) |
Ref | Expression |
---|---|
embedsetcestrclem | β’ (π β πΉ:πΆβ1-1βπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . 3 β’ π = (SetCatβπ) | |
2 | funcsetcestrc.c | . . 3 β’ πΆ = (Baseβπ) | |
3 | funcsetcestrc.f | . . 3 β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) | |
4 | funcsetcestrc.u | . . 3 β’ (π β π β WUni) | |
5 | funcsetcestrc.o | . . 3 β’ (π β Ο β π) | |
6 | funcsetcestrclem3.e | . . 3 β’ πΈ = (ExtStrCatβπ) | |
7 | funcsetcestrclem3.b | . . 3 β’ π΅ = (BaseβπΈ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcsetcestrclem3 18146 | . 2 β’ (π β πΉ:πΆβΆπ΅) |
9 | 1, 2, 3 | funcsetcestrclem1 18144 | . . . . . 6 β’ ((π β§ π¦ β πΆ) β (πΉβπ¦) = {β¨(Baseβndx), π¦β©}) |
10 | 9 | adantrr 715 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (πΉβπ¦) = {β¨(Baseβndx), π¦β©}) |
11 | 1, 2, 3 | funcsetcestrclem1 18144 | . . . . . 6 β’ ((π β§ π§ β πΆ) β (πΉβπ§) = {β¨(Baseβndx), π§β©}) |
12 | 11 | adantrl 714 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (πΉβπ§) = {β¨(Baseβndx), π§β©}) |
13 | 10, 12 | eqeq12d 2741 | . . . 4 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ((πΉβπ¦) = (πΉβπ§) β {β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©})) |
14 | opex 5465 | . . . . . 6 β’ β¨(Baseβndx), π¦β© β V | |
15 | sneqbg 4845 | . . . . . 6 β’ (β¨(Baseβndx), π¦β© β V β ({β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©} β β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β©)) | |
16 | 14, 15 | mp1i 13 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ({β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©} β β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β©)) |
17 | fvexd 6909 | . . . . . . 7 β’ (π β (Baseβndx) β V) | |
18 | simpl 481 | . . . . . . 7 β’ ((π¦ β πΆ β§ π§ β πΆ) β π¦ β πΆ) | |
19 | opthg 5478 | . . . . . . 7 β’ (((Baseβndx) β V β§ π¦ β πΆ) β (β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β© β ((Baseβndx) = (Baseβndx) β§ π¦ = π§))) | |
20 | 17, 18, 19 | syl2an 594 | . . . . . 6 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β© β ((Baseβndx) = (Baseβndx) β§ π¦ = π§))) |
21 | simpr 483 | . . . . . 6 β’ (((Baseβndx) = (Baseβndx) β§ π¦ = π§) β π¦ = π§) | |
22 | 20, 21 | biimtrdi 252 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β© β π¦ = π§)) |
23 | 16, 22 | sylbid 239 | . . . 4 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ({β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©} β π¦ = π§)) |
24 | 13, 23 | sylbid 239 | . . 3 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ((πΉβπ¦) = (πΉβπ§) β π¦ = π§)) |
25 | 24 | ralrimivva 3191 | . 2 β’ (π β βπ¦ β πΆ βπ§ β πΆ ((πΉβπ¦) = (πΉβπ§) β π¦ = π§)) |
26 | dff13 7263 | . 2 β’ (πΉ:πΆβ1-1βπ΅ β (πΉ:πΆβΆπ΅ β§ βπ¦ β πΆ βπ§ β πΆ ((πΉβπ¦) = (πΉβπ§) β π¦ = π§))) | |
27 | 8, 25, 26 | sylanbrc 581 | 1 β’ (π β πΉ:πΆβ1-1βπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 Vcvv 3463 {csn 4629 β¨cop 4635 β¦ cmpt 5231 βΆwf 6543 β1-1βwf1 6544 βcfv 6547 Οcom 7869 WUnicwun 10723 ndxcnx 17161 Basecbs 17179 SetCatcsetc 18063 ExtStrCatcestrc 18111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8723 df-ec 8725 df-qs 8729 df-map 8845 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-wun 10725 df-ni 10895 df-pli 10896 df-mi 10897 df-lti 10898 df-plpq 10931 df-mpq 10932 df-ltpq 10933 df-enq 10934 df-nq 10935 df-erq 10936 df-plq 10937 df-mq 10938 df-1nq 10939 df-rq 10940 df-ltnq 10941 df-np 11004 df-plp 11006 df-ltp 11008 df-enr 11078 df-nr 11079 df-c 11144 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-hom 17256 df-cco 17257 df-setc 18064 df-estrc 18112 |
This theorem is referenced by: embedsetcestrc 18157 |
Copyright terms: Public domain | W3C validator |