![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embedsetcestrclem | Structured version Visualization version GIF version |
Description: Lemma for embedsetcestrc 18115. (Contributed by AV, 31-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | β’ π = (SetCatβπ) |
funcsetcestrc.c | β’ πΆ = (Baseβπ) |
funcsetcestrc.f | β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) |
funcsetcestrc.u | β’ (π β π β WUni) |
funcsetcestrc.o | β’ (π β Ο β π) |
funcsetcestrclem3.e | β’ πΈ = (ExtStrCatβπ) |
funcsetcestrclem3.b | β’ π΅ = (BaseβπΈ) |
Ref | Expression |
---|---|
embedsetcestrclem | β’ (π β πΉ:πΆβ1-1βπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . 3 β’ π = (SetCatβπ) | |
2 | funcsetcestrc.c | . . 3 β’ πΆ = (Baseβπ) | |
3 | funcsetcestrc.f | . . 3 β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) | |
4 | funcsetcestrc.u | . . 3 β’ (π β π β WUni) | |
5 | funcsetcestrc.o | . . 3 β’ (π β Ο β π) | |
6 | funcsetcestrclem3.e | . . 3 β’ πΈ = (ExtStrCatβπ) | |
7 | funcsetcestrclem3.b | . . 3 β’ π΅ = (BaseβπΈ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcsetcestrclem3 18104 | . 2 β’ (π β πΉ:πΆβΆπ΅) |
9 | 1, 2, 3 | funcsetcestrclem1 18102 | . . . . . 6 β’ ((π β§ π¦ β πΆ) β (πΉβπ¦) = {β¨(Baseβndx), π¦β©}) |
10 | 9 | adantrr 715 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (πΉβπ¦) = {β¨(Baseβndx), π¦β©}) |
11 | 1, 2, 3 | funcsetcestrclem1 18102 | . . . . . 6 β’ ((π β§ π§ β πΆ) β (πΉβπ§) = {β¨(Baseβndx), π§β©}) |
12 | 11 | adantrl 714 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (πΉβπ§) = {β¨(Baseβndx), π§β©}) |
13 | 10, 12 | eqeq12d 2748 | . . . 4 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ((πΉβπ¦) = (πΉβπ§) β {β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©})) |
14 | opex 5463 | . . . . . 6 β’ β¨(Baseβndx), π¦β© β V | |
15 | sneqbg 4843 | . . . . . 6 β’ (β¨(Baseβndx), π¦β© β V β ({β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©} β β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β©)) | |
16 | 14, 15 | mp1i 13 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ({β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©} β β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β©)) |
17 | fvexd 6903 | . . . . . . 7 β’ (π β (Baseβndx) β V) | |
18 | simpl 483 | . . . . . . 7 β’ ((π¦ β πΆ β§ π§ β πΆ) β π¦ β πΆ) | |
19 | opthg 5476 | . . . . . . 7 β’ (((Baseβndx) β V β§ π¦ β πΆ) β (β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β© β ((Baseβndx) = (Baseβndx) β§ π¦ = π§))) | |
20 | 17, 18, 19 | syl2an 596 | . . . . . 6 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β© β ((Baseβndx) = (Baseβndx) β§ π¦ = π§))) |
21 | simpr 485 | . . . . . 6 β’ (((Baseβndx) = (Baseβndx) β§ π¦ = π§) β π¦ = π§) | |
22 | 20, 21 | syl6bi 252 | . . . . 5 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β (β¨(Baseβndx), π¦β© = β¨(Baseβndx), π§β© β π¦ = π§)) |
23 | 16, 22 | sylbid 239 | . . . 4 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ({β¨(Baseβndx), π¦β©} = {β¨(Baseβndx), π§β©} β π¦ = π§)) |
24 | 13, 23 | sylbid 239 | . . 3 β’ ((π β§ (π¦ β πΆ β§ π§ β πΆ)) β ((πΉβπ¦) = (πΉβπ§) β π¦ = π§)) |
25 | 24 | ralrimivva 3200 | . 2 β’ (π β βπ¦ β πΆ βπ§ β πΆ ((πΉβπ¦) = (πΉβπ§) β π¦ = π§)) |
26 | dff13 7250 | . 2 β’ (πΉ:πΆβ1-1βπ΅ β (πΉ:πΆβΆπ΅ β§ βπ¦ β πΆ βπ§ β πΆ ((πΉβπ¦) = (πΉβπ§) β π¦ = π§))) | |
27 | 8, 25, 26 | sylanbrc 583 | 1 β’ (π β πΉ:πΆβ1-1βπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 {csn 4627 β¨cop 4633 β¦ cmpt 5230 βΆwf 6536 β1-1βwf1 6537 βcfv 6540 Οcom 7851 WUnicwun 10691 ndxcnx 17122 Basecbs 17140 SetCatcsetc 18021 ExtStrCatcestrc 18069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-wun 10693 df-ni 10863 df-pli 10864 df-mi 10865 df-lti 10866 df-plpq 10899 df-mpq 10900 df-ltpq 10901 df-enq 10902 df-nq 10903 df-erq 10904 df-plq 10905 df-mq 10906 df-1nq 10907 df-rq 10908 df-ltnq 10909 df-np 10972 df-plp 10974 df-ltp 10976 df-enr 11046 df-nr 11047 df-c 11112 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-setc 18022 df-estrc 18070 |
This theorem is referenced by: embedsetcestrc 18115 |
Copyright terms: Public domain | W3C validator |