| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embedsetcestrclem | Structured version Visualization version GIF version | ||
| Description: Lemma for embedsetcestrc 18081. (Contributed by AV, 31-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrclem3.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcsetcestrclem3.b | ⊢ 𝐵 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| embedsetcestrclem | ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 2 | funcsetcestrc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 4 | funcsetcestrc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | funcsetcestrclem3.e | . . 3 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 7 | funcsetcestrclem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | funcsetcestrclem3 18070 | . 2 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| 9 | 1, 2, 3 | funcsetcestrclem1 18068 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) = {〈(Base‘ndx), 𝑦〉}) |
| 10 | 9 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑦) = {〈(Base‘ndx), 𝑦〉}) |
| 11 | 1, 2, 3 | funcsetcestrclem1 18068 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) = {〈(Base‘ndx), 𝑧〉}) |
| 12 | 11 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑧) = {〈(Base‘ndx), 𝑧〉}) |
| 13 | 10, 12 | eqeq12d 2749 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ {〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉})) |
| 14 | opex 5409 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝑦〉 ∈ V | |
| 15 | sneqbg 4796 | . . . . . 6 ⊢ (〈(Base‘ndx), 𝑦〉 ∈ V → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} ↔ 〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉)) | |
| 16 | 14, 15 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} ↔ 〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉)) |
| 17 | fvexd 6846 | . . . . . . 7 ⊢ (𝜑 → (Base‘ndx) ∈ V) | |
| 18 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → 𝑦 ∈ 𝐶) | |
| 19 | opthg 5422 | . . . . . . 7 ⊢ (((Base‘ndx) ∈ V ∧ 𝑦 ∈ 𝐶) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧))) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧))) |
| 21 | simpr 484 | . . . . . 6 ⊢ (((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) | |
| 22 | 20, 21 | biimtrdi 253 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 → 𝑦 = 𝑧)) |
| 23 | 16, 22 | sylbid 240 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} → 𝑦 = 𝑧)) |
| 24 | 13, 23 | sylbid 240 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
| 25 | 24 | ralrimivva 3176 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
| 26 | dff13 7197 | . 2 ⊢ (𝐹:𝐶–1-1→𝐵 ↔ (𝐹:𝐶⟶𝐵 ∧ ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) | |
| 27 | 8, 25, 26 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 {csn 4577 〈cop 4583 ↦ cmpt 5176 ⟶wf 6485 –1-1→wf1 6486 ‘cfv 6489 ωcom 7805 WUnicwun 10602 ndxcnx 17111 Basecbs 17127 SetCatcsetc 17990 ExtStrCatcestrc 18036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-wun 10604 df-ni 10774 df-pli 10775 df-mi 10776 df-lti 10777 df-plpq 10810 df-mpq 10811 df-ltpq 10812 df-enq 10813 df-nq 10814 df-erq 10815 df-plq 10816 df-mq 10817 df-1nq 10818 df-rq 10819 df-ltnq 10820 df-np 10883 df-plp 10885 df-ltp 10887 df-enr 10957 df-nr 10958 df-c 11023 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-setc 17991 df-estrc 18037 |
| This theorem is referenced by: embedsetcestrc 18081 |
| Copyright terms: Public domain | W3C validator |