Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > embedsetcestrclem | Structured version Visualization version GIF version |
Description: Lemma for embedsetcestrc 17533. (Contributed by AV, 31-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrclem3.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcsetcestrclem3.b | ⊢ 𝐵 = (Base‘𝐸) |
Ref | Expression |
---|---|
embedsetcestrclem | ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
2 | funcsetcestrc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
3 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
4 | funcsetcestrc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
5 | funcsetcestrc.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
6 | funcsetcestrclem3.e | . . 3 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
7 | funcsetcestrclem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcsetcestrclem3 17522 | . 2 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
9 | 1, 2, 3 | funcsetcestrclem1 17520 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) = {〈(Base‘ndx), 𝑦〉}) |
10 | 9 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑦) = {〈(Base‘ndx), 𝑦〉}) |
11 | 1, 2, 3 | funcsetcestrclem1 17520 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) = {〈(Base‘ndx), 𝑧〉}) |
12 | 11 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑧) = {〈(Base‘ndx), 𝑧〉}) |
13 | 10, 12 | eqeq12d 2754 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ {〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉})) |
14 | opex 5322 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝑦〉 ∈ V | |
15 | sneqbg 4729 | . . . . . 6 ⊢ (〈(Base‘ndx), 𝑦〉 ∈ V → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} ↔ 〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉)) | |
16 | 14, 15 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} ↔ 〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉)) |
17 | fvexd 6689 | . . . . . . 7 ⊢ (𝜑 → (Base‘ndx) ∈ V) | |
18 | simpl 486 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → 𝑦 ∈ 𝐶) | |
19 | opthg 5335 | . . . . . . 7 ⊢ (((Base‘ndx) ∈ V ∧ 𝑦 ∈ 𝐶) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧))) | |
20 | 17, 18, 19 | syl2an 599 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧))) |
21 | simpr 488 | . . . . . 6 ⊢ (((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) | |
22 | 20, 21 | syl6bi 256 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 → 𝑦 = 𝑧)) |
23 | 16, 22 | sylbid 243 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} → 𝑦 = 𝑧)) |
24 | 13, 23 | sylbid 243 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
25 | 24 | ralrimivva 3103 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
26 | dff13 7024 | . 2 ⊢ (𝐹:𝐶–1-1→𝐵 ↔ (𝐹:𝐶⟶𝐵 ∧ ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) | |
27 | 8, 25, 26 | sylanbrc 586 | 1 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 {csn 4516 〈cop 4522 ↦ cmpt 5110 ⟶wf 6335 –1-1→wf1 6336 ‘cfv 6339 ωcom 7599 WUnicwun 10200 ndxcnx 16583 Basecbs 16586 SetCatcsetc 17447 ExtStrCatcestrc 17488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-oadd 8135 df-omul 8136 df-er 8320 df-ec 8322 df-qs 8326 df-map 8439 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-wun 10202 df-ni 10372 df-pli 10373 df-mi 10374 df-lti 10375 df-plpq 10408 df-mpq 10409 df-ltpq 10410 df-enq 10411 df-nq 10412 df-erq 10413 df-plq 10414 df-mq 10415 df-1nq 10416 df-rq 10417 df-ltnq 10418 df-np 10481 df-plp 10483 df-ltp 10485 df-enr 10555 df-nr 10556 df-c 10621 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-hom 16692 df-cco 16693 df-setc 17448 df-estrc 17489 |
This theorem is referenced by: embedsetcestrc 17533 |
Copyright terms: Public domain | W3C validator |