| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embedsetcestrclem | Structured version Visualization version GIF version | ||
| Description: Lemma for embedsetcestrc 18068. (Contributed by AV, 31-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrclem3.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcsetcestrclem3.b | ⊢ 𝐵 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| embedsetcestrclem | ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 2 | funcsetcestrc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 4 | funcsetcestrc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | funcsetcestrclem3.e | . . 3 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 7 | funcsetcestrclem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | funcsetcestrclem3 18057 | . 2 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| 9 | 1, 2, 3 | funcsetcestrclem1 18055 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) = {〈(Base‘ndx), 𝑦〉}) |
| 10 | 9 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑦) = {〈(Base‘ndx), 𝑦〉}) |
| 11 | 1, 2, 3 | funcsetcestrclem1 18055 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) = {〈(Base‘ndx), 𝑧〉}) |
| 12 | 11 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑧) = {〈(Base‘ndx), 𝑧〉}) |
| 13 | 10, 12 | eqeq12d 2747 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ {〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉})) |
| 14 | opex 5399 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝑦〉 ∈ V | |
| 15 | sneqbg 4790 | . . . . . 6 ⊢ (〈(Base‘ndx), 𝑦〉 ∈ V → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} ↔ 〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉)) | |
| 16 | 14, 15 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} ↔ 〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉)) |
| 17 | fvexd 6832 | . . . . . . 7 ⊢ (𝜑 → (Base‘ndx) ∈ V) | |
| 18 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → 𝑦 ∈ 𝐶) | |
| 19 | opthg 5412 | . . . . . . 7 ⊢ (((Base‘ndx) ∈ V ∧ 𝑦 ∈ 𝐶) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧))) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧))) |
| 21 | simpr 484 | . . . . . 6 ⊢ (((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) | |
| 22 | 20, 21 | biimtrdi 253 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → (〈(Base‘ndx), 𝑦〉 = 〈(Base‘ndx), 𝑧〉 → 𝑦 = 𝑧)) |
| 23 | 16, 22 | sylbid 240 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ({〈(Base‘ndx), 𝑦〉} = {〈(Base‘ndx), 𝑧〉} → 𝑦 = 𝑧)) |
| 24 | 13, 23 | sylbid 240 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
| 25 | 24 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
| 26 | dff13 7183 | . 2 ⊢ (𝐹:𝐶–1-1→𝐵 ↔ (𝐹:𝐶⟶𝐵 ∧ ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) | |
| 27 | 8, 25, 26 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {csn 4571 〈cop 4577 ↦ cmpt 5167 ⟶wf 6472 –1-1→wf1 6473 ‘cfv 6476 ωcom 7791 WUnicwun 10586 ndxcnx 17099 Basecbs 17115 SetCatcsetc 17977 ExtStrCatcestrc 18023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-wun 10588 df-ni 10758 df-pli 10759 df-mi 10760 df-lti 10761 df-plpq 10794 df-mpq 10795 df-ltpq 10796 df-enq 10797 df-nq 10798 df-erq 10799 df-plq 10800 df-mq 10801 df-1nq 10802 df-rq 10803 df-ltnq 10804 df-np 10867 df-plp 10869 df-ltp 10871 df-enr 10941 df-nr 10942 df-c 11007 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-setc 17978 df-estrc 18024 |
| This theorem is referenced by: embedsetcestrc 18068 |
| Copyright terms: Public domain | W3C validator |