MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  embedsetcestrclem Structured version   Visualization version   GIF version

Theorem embedsetcestrclem 18212
Description: Lemma for embedsetcestrc 18222. (Contributed by AV, 31-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrclem3.e 𝐸 = (ExtStrCat‘𝑈)
funcsetcestrclem3.b 𝐵 = (Base‘𝐸)
Assertion
Ref Expression
embedsetcestrclem (𝜑𝐹:𝐶1-1𝐵)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐹(𝑥)

Proof of Theorem embedsetcestrclem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrclem3.e . . 3 𝐸 = (ExtStrCat‘𝑈)
7 funcsetcestrclem3.b . . 3 𝐵 = (Base‘𝐸)
81, 2, 3, 4, 5, 6, 7funcsetcestrclem3 18211 . 2 (𝜑𝐹:𝐶𝐵)
91, 2, 3funcsetcestrclem1 18209 . . . . . 6 ((𝜑𝑦𝐶) → (𝐹𝑦) = {⟨(Base‘ndx), 𝑦⟩})
109adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (𝐹𝑦) = {⟨(Base‘ndx), 𝑦⟩})
111, 2, 3funcsetcestrclem1 18209 . . . . . 6 ((𝜑𝑧𝐶) → (𝐹𝑧) = {⟨(Base‘ndx), 𝑧⟩})
1211adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (𝐹𝑧) = {⟨(Base‘ndx), 𝑧⟩})
1310, 12eqeq12d 2750 . . . 4 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ((𝐹𝑦) = (𝐹𝑧) ↔ {⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩}))
14 opex 5474 . . . . . 6 ⟨(Base‘ndx), 𝑦⟩ ∈ V
15 sneqbg 4847 . . . . . 6 (⟨(Base‘ndx), 𝑦⟩ ∈ V → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} ↔ ⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩))
1614, 15mp1i 13 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} ↔ ⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩))
17 fvexd 6921 . . . . . . 7 (𝜑 → (Base‘ndx) ∈ V)
18 simpl 482 . . . . . . 7 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
19 opthg 5487 . . . . . . 7 (((Base‘ndx) ∈ V ∧ 𝑦𝐶) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧)))
2017, 18, 19syl2an 596 . . . . . 6 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧)))
21 simpr 484 . . . . . 6 (((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)
2220, 21biimtrdi 253 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ → 𝑦 = 𝑧))
2316, 22sylbid 240 . . . 4 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} → 𝑦 = 𝑧))
2413, 23sylbid 240 . . 3 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
2524ralrimivva 3199 . 2 (𝜑 → ∀𝑦𝐶𝑧𝐶 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
26 dff13 7274 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ ∀𝑦𝐶𝑧𝐶 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
278, 25, 26sylanbrc 583 1 (𝜑𝐹:𝐶1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  {csn 4630  cop 4636  cmpt 5230  wf 6558  1-1wf1 6559  cfv 6562  ωcom 7886  WUnicwun 10737  ndxcnx 17226  Basecbs 17244  SetCatcsetc 18128  ExtStrCatcestrc 18176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-wun 10739  df-ni 10909  df-pli 10910  df-mi 10911  df-lti 10912  df-plpq 10945  df-mpq 10946  df-ltpq 10947  df-enq 10948  df-nq 10949  df-erq 10950  df-plq 10951  df-mq 10952  df-1nq 10953  df-rq 10954  df-ltnq 10955  df-np 11018  df-plp 11020  df-ltp 11022  df-enr 11092  df-nr 11093  df-c 11158  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-hom 17321  df-cco 17322  df-setc 18129  df-estrc 18177
This theorem is referenced by:  embedsetcestrc  18222
  Copyright terms: Public domain W3C validator