![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1dimbas | Structured version Visualization version GIF version |
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
mat1dim.o | ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ |
Ref | Expression |
---|---|
mat1dimbas | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {⟨𝑂, 𝑋⟩} ∈ (Base‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3229 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) | |
2 | eqcom 2738 | . . . . . 6 ⊢ (𝑋 = 𝑟 ↔ 𝑟 = 𝑋) | |
3 | 2 | rexbii 3093 | . . . . 5 ⊢ (∃𝑟 ∈ 𝐵 𝑋 = 𝑟 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) |
4 | 1, 3 | sylbb2 237 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
5 | 4 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
6 | mat1dim.o | . . . . . . 7 ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ | |
7 | opex 5465 | . . . . . . 7 ⊢ ⟨𝐸, 𝐸⟩ ∈ V | |
8 | 6, 7 | eqeltri 2828 | . . . . . 6 ⊢ 𝑂 ∈ V |
9 | simp3 1137 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | opthg 5478 | . . . . . 6 ⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → (⟨𝑂, 𝑋⟩ = ⟨𝑂, 𝑟⟩ ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (⟨𝑂, 𝑋⟩ = ⟨𝑂, 𝑟⟩ ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) |
12 | opex 5465 | . . . . . 6 ⊢ ⟨𝑂, 𝑋⟩ ∈ V | |
13 | sneqbg 4845 | . . . . . 6 ⊢ (⟨𝑂, 𝑋⟩ ∈ V → ({⟨𝑂, 𝑋⟩} = {⟨𝑂, 𝑟⟩} ↔ ⟨𝑂, 𝑋⟩ = ⟨𝑂, 𝑟⟩)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ ({⟨𝑂, 𝑋⟩} = {⟨𝑂, 𝑟⟩} ↔ ⟨𝑂, 𝑋⟩ = ⟨𝑂, 𝑟⟩) |
15 | eqid 2731 | . . . . . 6 ⊢ 𝑂 = 𝑂 | |
16 | 15 | biantrur 530 | . . . . 5 ⊢ (𝑋 = 𝑟 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟)) |
17 | 11, 14, 16 | 3bitr4g 313 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({⟨𝑂, 𝑋⟩} = {⟨𝑂, 𝑟⟩} ↔ 𝑋 = 𝑟)) |
18 | 17 | rexbidv 3177 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (∃𝑟 ∈ 𝐵 {⟨𝑂, 𝑋⟩} = {⟨𝑂, 𝑟⟩} ↔ ∃𝑟 ∈ 𝐵 𝑋 = 𝑟)) |
19 | 5, 18 | mpbird 256 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 {⟨𝑂, 𝑋⟩} = {⟨𝑂, 𝑟⟩}) |
20 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
21 | mat1dim.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
22 | 20, 21, 6 | mat1dimelbas 22194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({⟨𝑂, 𝑋⟩} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {⟨𝑂, 𝑋⟩} = {⟨𝑂, 𝑟⟩})) |
23 | 22 | 3adant3 1131 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({⟨𝑂, 𝑋⟩} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {⟨𝑂, 𝑋⟩} = {⟨𝑂, 𝑟⟩})) |
24 | 19, 23 | mpbird 256 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {⟨𝑂, 𝑋⟩} ∈ (Base‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 {csn 4629 ⟨cop 4635 ‘cfv 6544 (class class class)co 7412 Basecbs 17149 Ringcrg 20128 Mat cmat 22128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-prds 17398 df-pws 17400 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 df-mat 22129 |
This theorem is referenced by: mat1dimscm 22198 mat1rhmcl 22204 |
Copyright terms: Public domain | W3C validator |