Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat1dimbas | Structured version Visualization version GIF version |
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
mat1dim.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
Ref | Expression |
---|---|
mat1dimbas | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3192 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) | |
2 | eqcom 2745 | . . . . . 6 ⊢ (𝑋 = 𝑟 ↔ 𝑟 = 𝑋) | |
3 | 2 | rexbii 3176 | . . . . 5 ⊢ (∃𝑟 ∈ 𝐵 𝑋 = 𝑟 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) |
4 | 1, 3 | sylbb2 241 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
5 | 4 | 3ad2ant3 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
6 | mat1dim.o | . . . . . . 7 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
7 | opex 5362 | . . . . . . 7 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
8 | 6, 7 | eqeltri 2835 | . . . . . 6 ⊢ 𝑂 ∈ V |
9 | simp3 1140 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | opthg 5375 | . . . . . 6 ⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) | |
11 | 8, 9, 10 | sylancr 590 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) |
12 | opex 5362 | . . . . . 6 ⊢ 〈𝑂, 𝑋〉 ∈ V | |
13 | sneqbg 4768 | . . . . . 6 ⊢ (〈𝑂, 𝑋〉 ∈ V → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉) |
15 | eqid 2738 | . . . . . 6 ⊢ 𝑂 = 𝑂 | |
16 | 15 | biantrur 534 | . . . . 5 ⊢ (𝑋 = 𝑟 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟)) |
17 | 11, 14, 16 | 3bitr4g 317 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 𝑋 = 𝑟)) |
18 | 17 | rexbidv 3224 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ ∃𝑟 ∈ 𝐵 𝑋 = 𝑟)) |
19 | 5, 18 | mpbird 260 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉}) |
20 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
21 | mat1dim.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
22 | 20, 21, 6 | mat1dimelbas 21392 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
23 | 22 | 3adant3 1134 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
24 | 19, 23 | mpbird 260 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∃wrex 3063 Vcvv 3420 {csn 4555 〈cop 4561 ‘cfv 6397 (class class class)co 7231 Basecbs 16784 Ringcrg 19586 Mat cmat 21328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-ot 4564 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-supp 7924 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-ixp 8599 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-fsupp 9010 df-sup 9082 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-dec 12318 df-uz 12463 df-fz 13120 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-mulr 16840 df-sca 16842 df-vsca 16843 df-ip 16844 df-tset 16845 df-ple 16846 df-ds 16848 df-hom 16850 df-cco 16851 df-0g 16970 df-prds 16976 df-pws 16978 df-sra 20233 df-rgmod 20234 df-dsmm 20718 df-frlm 20733 df-mat 21329 |
This theorem is referenced by: mat1dimscm 21396 mat1rhmcl 21402 |
Copyright terms: Public domain | W3C validator |