![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1dimbas | Structured version Visualization version GIF version |
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
mat1dim.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
Ref | Expression |
---|---|
mat1dimbas | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3239 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) | |
2 | eqcom 2747 | . . . . . 6 ⊢ (𝑋 = 𝑟 ↔ 𝑟 = 𝑋) | |
3 | 2 | rexbii 3100 | . . . . 5 ⊢ (∃𝑟 ∈ 𝐵 𝑋 = 𝑟 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) |
4 | 1, 3 | sylbb2 238 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
6 | mat1dim.o | . . . . . . 7 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
7 | opex 5484 | . . . . . . 7 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
8 | 6, 7 | eqeltri 2840 | . . . . . 6 ⊢ 𝑂 ∈ V |
9 | simp3 1138 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | opthg 5497 | . . . . . 6 ⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) |
12 | opex 5484 | . . . . . 6 ⊢ 〈𝑂, 𝑋〉 ∈ V | |
13 | sneqbg 4868 | . . . . . 6 ⊢ (〈𝑂, 𝑋〉 ∈ V → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉) |
15 | eqid 2740 | . . . . . 6 ⊢ 𝑂 = 𝑂 | |
16 | 15 | biantrur 530 | . . . . 5 ⊢ (𝑋 = 𝑟 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟)) |
17 | 11, 14, 16 | 3bitr4g 314 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 𝑋 = 𝑟)) |
18 | 17 | rexbidv 3185 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ ∃𝑟 ∈ 𝐵 𝑋 = 𝑟)) |
19 | 5, 18 | mpbird 257 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉}) |
20 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
21 | mat1dim.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
22 | 20, 21, 6 | mat1dimelbas 22498 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
23 | 22 | 3adant3 1132 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
24 | 19, 23 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 {csn 4648 〈cop 4654 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Ringcrg 20260 Mat cmat 22432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-sra 21195 df-rgmod 21196 df-dsmm 21775 df-frlm 21790 df-mat 22433 |
This theorem is referenced by: mat1dimscm 22502 mat1rhmcl 22508 |
Copyright terms: Public domain | W3C validator |