| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1dimbas | Structured version Visualization version GIF version | ||
| Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
| mat1dim.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| Ref | Expression |
|---|---|
| mat1dimbas | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 3208 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) | |
| 2 | eqcom 2740 | . . . . . 6 ⊢ (𝑋 = 𝑟 ↔ 𝑟 = 𝑋) | |
| 3 | 2 | rexbii 3080 | . . . . 5 ⊢ (∃𝑟 ∈ 𝐵 𝑋 = 𝑟 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) |
| 4 | 1, 3 | sylbb2 238 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
| 6 | mat1dim.o | . . . . . . 7 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
| 7 | opex 5409 | . . . . . . 7 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
| 8 | 6, 7 | eqeltri 2829 | . . . . . 6 ⊢ 𝑂 ∈ V |
| 9 | simp3 1138 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 10 | opthg 5422 | . . . . . 6 ⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) |
| 12 | opex 5409 | . . . . . 6 ⊢ 〈𝑂, 𝑋〉 ∈ V | |
| 13 | sneqbg 4796 | . . . . . 6 ⊢ (〈𝑂, 𝑋〉 ∈ V → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉)) | |
| 14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉) |
| 15 | eqid 2733 | . . . . . 6 ⊢ 𝑂 = 𝑂 | |
| 16 | 15 | biantrur 530 | . . . . 5 ⊢ (𝑋 = 𝑟 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟)) |
| 17 | 11, 14, 16 | 3bitr4g 314 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 𝑋 = 𝑟)) |
| 18 | 17 | rexbidv 3157 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ ∃𝑟 ∈ 𝐵 𝑋 = 𝑟)) |
| 19 | 5, 18 | mpbird 257 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉}) |
| 20 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
| 21 | mat1dim.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 22 | 20, 21, 6 | mat1dimelbas 22389 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
| 23 | 22 | 3adant3 1132 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
| 24 | 19, 23 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 {csn 4577 〈cop 4583 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 Ringcrg 20155 Mat cmat 22325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-prds 17355 df-pws 17357 df-sra 21111 df-rgmod 21112 df-dsmm 21673 df-frlm 21688 df-mat 22326 |
| This theorem is referenced by: mat1dimscm 22393 mat1rhmcl 22399 |
| Copyright terms: Public domain | W3C validator |