![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1dimbas | Structured version Visualization version GIF version |
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
mat1dim.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
Ref | Expression |
---|---|
mat1dimbas | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3225 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) | |
2 | eqcom 2734 | . . . . . 6 ⊢ (𝑋 = 𝑟 ↔ 𝑟 = 𝑋) | |
3 | 2 | rexbii 3089 | . . . . 5 ⊢ (∃𝑟 ∈ 𝐵 𝑋 = 𝑟 ↔ ∃𝑟 ∈ 𝐵 𝑟 = 𝑋) |
4 | 1, 3 | sylbb2 237 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
5 | 4 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 𝑋 = 𝑟) |
6 | mat1dim.o | . . . . . . 7 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
7 | opex 5460 | . . . . . . 7 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
8 | 6, 7 | eqeltri 2824 | . . . . . 6 ⊢ 𝑂 ∈ V |
9 | simp3 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | opthg 5473 | . . . . . 6 ⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟))) |
12 | opex 5460 | . . . . . 6 ⊢ 〈𝑂, 𝑋〉 ∈ V | |
13 | sneqbg 4840 | . . . . . 6 ⊢ (〈𝑂, 𝑋〉 ∈ V → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 〈𝑂, 𝑋〉 = 〈𝑂, 𝑟〉) |
15 | eqid 2727 | . . . . . 6 ⊢ 𝑂 = 𝑂 | |
16 | 15 | biantrur 530 | . . . . 5 ⊢ (𝑋 = 𝑟 ↔ (𝑂 = 𝑂 ∧ 𝑋 = 𝑟)) |
17 | 11, 14, 16 | 3bitr4g 314 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ 𝑋 = 𝑟)) |
18 | 17 | rexbidv 3173 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉} ↔ ∃𝑟 ∈ 𝐵 𝑋 = 𝑟)) |
19 | 5, 18 | mpbird 257 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉}) |
20 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
21 | mat1dim.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
22 | 20, 21, 6 | mat1dimelbas 22366 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
23 | 22 | 3adant3 1130 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → ({〈𝑂, 𝑋〉} ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 {〈𝑂, 𝑋〉} = {〈𝑂, 𝑟〉})) |
24 | 19, 23 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 {csn 4624 〈cop 4630 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 Ringcrg 20166 Mat cmat 22300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17416 df-prds 17422 df-pws 17424 df-sra 21051 df-rgmod 21052 df-dsmm 21659 df-frlm 21674 df-mat 22301 |
This theorem is referenced by: mat1dimscm 22370 mat1rhmcl 22376 |
Copyright terms: Public domain | W3C validator |