| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppval1 | Structured version Visualization version GIF version | ||
| Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| suppval1 | ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8144 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| 3 | funfn 6549 | . . . . . . . . 9 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
| 4 | 3 | biimpi 216 | . . . . . . . 8 ⊢ (Fun 𝑋 → 𝑋 Fn dom 𝑋) |
| 5 | 4 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 Fn dom 𝑋) |
| 6 | fnsnfv 6943 | . . . . . . 7 ⊢ ((𝑋 Fn dom 𝑋 ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) | |
| 7 | 5, 6 | sylan 580 | . . . . . 6 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) |
| 8 | 7 | eqcomd 2736 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋‘𝑖)}) |
| 9 | 8 | neeq1d 2985 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋‘𝑖)} ≠ {𝑍})) |
| 10 | fvex 6874 | . . . . . 6 ⊢ (𝑋‘𝑖) ∈ V | |
| 11 | sneqbg 4810 | . . . . . 6 ⊢ ((𝑋‘𝑖) ∈ V → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) |
| 13 | 12 | necon3bid 2970 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
| 14 | 9, 13 | bitrd 279 | . . 3 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
| 15 | 14 | rabbidva 3415 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
| 16 | 2, 15 | eqtrd 2765 | 1 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 {csn 4592 dom cdm 5641 “ cima 5644 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-supp 8143 |
| This theorem is referenced by: suppvalfng 8149 suppvalfn 8150 suppfnss 8171 fnsuppres 8173 mndpsuppss 18699 rmfsupp2 33196 domnmsuppn0 48361 rmsuppss 48362 scmsuppss 48363 suppdm 48503 |
| Copyright terms: Public domain | W3C validator |