![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppval1 | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
suppval1 | ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 8151 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) | |
2 | 1 | 3adant1 1129 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
3 | funfn 6578 | . . . . . . . . 9 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
4 | 3 | biimpi 215 | . . . . . . . 8 ⊢ (Fun 𝑋 → 𝑋 Fn dom 𝑋) |
5 | 4 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 Fn dom 𝑋) |
6 | fnsnfv 6970 | . . . . . . 7 ⊢ ((𝑋 Fn dom 𝑋 ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) | |
7 | 5, 6 | sylan 579 | . . . . . 6 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) |
8 | 7 | eqcomd 2737 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋‘𝑖)}) |
9 | 8 | neeq1d 2999 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋‘𝑖)} ≠ {𝑍})) |
10 | fvex 6904 | . . . . . 6 ⊢ (𝑋‘𝑖) ∈ V | |
11 | sneqbg 4844 | . . . . . 6 ⊢ ((𝑋‘𝑖) ∈ V → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) | |
12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) |
13 | 12 | necon3bid 2984 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
14 | 9, 13 | bitrd 279 | . . 3 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
15 | 14 | rabbidva 3438 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
16 | 2, 15 | eqtrd 2771 | 1 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 Vcvv 3473 {csn 4628 dom cdm 5676 “ cima 5679 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 supp csupp 8149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-supp 8150 |
This theorem is referenced by: suppvalfng 8156 suppvalfn 8157 suppfnss 8177 fnsuppres 8179 rmfsupp2 32658 domnmsuppn0 47134 rmsuppss 47135 mndpsuppss 47136 scmsuppss 47137 suppdm 47279 |
Copyright terms: Public domain | W3C validator |