MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval1 Structured version   Visualization version   GIF version

Theorem suppval1 8148
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍

Proof of Theorem suppval1
StepHypRef Expression
1 suppval 8144 . . 3 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
213adant1 1130 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
3 funfn 6549 . . . . . . . . 9 (Fun 𝑋𝑋 Fn dom 𝑋)
43biimpi 216 . . . . . . . 8 (Fun 𝑋𝑋 Fn dom 𝑋)
543ad2ant1 1133 . . . . . . 7 ((Fun 𝑋𝑋𝑉𝑍𝑊) → 𝑋 Fn dom 𝑋)
6 fnsnfv 6943 . . . . . . 7 ((𝑋 Fn dom 𝑋𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
75, 6sylan 580 . . . . . 6 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
87eqcomd 2736 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋𝑖)})
98neeq1d 2985 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋𝑖)} ≠ {𝑍}))
10 fvex 6874 . . . . . 6 (𝑋𝑖) ∈ V
11 sneqbg 4810 . . . . . 6 ((𝑋𝑖) ∈ V → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1210, 11mp1i 13 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1312necon3bid 2970 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
149, 13bitrd 279 . . 3 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
1514rabbidva 3415 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
162, 15eqtrd 2765 1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  {csn 4592  dom cdm 5641  cima 5644  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by:  suppvalfng  8149  suppvalfn  8150  suppfnss  8171  fnsuppres  8173  mndpsuppss  18699  rmfsupp2  33196  domnmsuppn0  48361  rmsuppss  48362  scmsuppss  48363  suppdm  48503
  Copyright terms: Public domain W3C validator