MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval1 Structured version   Visualization version   GIF version

Theorem suppval1 7983
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍

Proof of Theorem suppval1
StepHypRef Expression
1 suppval 7979 . . 3 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
213adant1 1129 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
3 funfn 6464 . . . . . . . . 9 (Fun 𝑋𝑋 Fn dom 𝑋)
43biimpi 215 . . . . . . . 8 (Fun 𝑋𝑋 Fn dom 𝑋)
543ad2ant1 1132 . . . . . . 7 ((Fun 𝑋𝑋𝑉𝑍𝑊) → 𝑋 Fn dom 𝑋)
6 fnsnfv 6847 . . . . . . 7 ((𝑋 Fn dom 𝑋𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
75, 6sylan 580 . . . . . 6 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
87eqcomd 2744 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋𝑖)})
98neeq1d 3003 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋𝑖)} ≠ {𝑍}))
10 fvex 6787 . . . . . 6 (𝑋𝑖) ∈ V
11 sneqbg 4774 . . . . . 6 ((𝑋𝑖) ∈ V → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1210, 11mp1i 13 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1312necon3bid 2988 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
149, 13bitrd 278 . . 3 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
1514rabbidva 3413 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
162, 15eqtrd 2778 1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  {csn 4561  dom cdm 5589  cima 5592  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  suppvalfng  7984  suppvalfn  7985  suppfnss  8005  fnsuppres  8007  rmfsupp2  31492  domnmsuppn0  45705  rmsuppss  45706  mndpsuppss  45707  scmsuppss  45708  suppdm  45851
  Copyright terms: Public domain W3C validator