![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppval1 | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
suppval1 | ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 8167 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) | |
2 | 1 | 3adant1 1127 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
3 | funfn 6584 | . . . . . . . . 9 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
4 | 3 | biimpi 215 | . . . . . . . 8 ⊢ (Fun 𝑋 → 𝑋 Fn dom 𝑋) |
5 | 4 | 3ad2ant1 1130 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 Fn dom 𝑋) |
6 | fnsnfv 6976 | . . . . . . 7 ⊢ ((𝑋 Fn dom 𝑋 ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) | |
7 | 5, 6 | sylan 578 | . . . . . 6 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) |
8 | 7 | eqcomd 2731 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋‘𝑖)}) |
9 | 8 | neeq1d 2989 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋‘𝑖)} ≠ {𝑍})) |
10 | fvex 6909 | . . . . . 6 ⊢ (𝑋‘𝑖) ∈ V | |
11 | sneqbg 4846 | . . . . . 6 ⊢ ((𝑋‘𝑖) ∈ V → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) | |
12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) |
13 | 12 | necon3bid 2974 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
14 | 9, 13 | bitrd 278 | . . 3 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
15 | 14 | rabbidva 3425 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
16 | 2, 15 | eqtrd 2765 | 1 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 {crab 3418 Vcvv 3461 {csn 4630 dom cdm 5678 “ cima 5681 Fun wfun 6543 Fn wfn 6544 ‘cfv 6549 (class class class)co 7419 supp csupp 8165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-supp 8166 |
This theorem is referenced by: suppvalfng 8172 suppvalfn 8173 suppfnss 8194 fnsuppres 8196 rmfsupp2 33038 domnmsuppn0 47619 rmsuppss 47620 mndpsuppss 47621 scmsuppss 47622 suppdm 47764 |
Copyright terms: Public domain | W3C validator |