MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval1 Structured version   Visualization version   GIF version

Theorem suppval1 7819
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍

Proof of Theorem suppval1
StepHypRef Expression
1 suppval 7815 . . 3 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
213adant1 1127 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
3 funfn 6354 . . . . . . . . 9 (Fun 𝑋𝑋 Fn dom 𝑋)
43biimpi 219 . . . . . . . 8 (Fun 𝑋𝑋 Fn dom 𝑋)
543ad2ant1 1130 . . . . . . 7 ((Fun 𝑋𝑋𝑉𝑍𝑊) → 𝑋 Fn dom 𝑋)
6 fnsnfv 6718 . . . . . . 7 ((𝑋 Fn dom 𝑋𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
75, 6sylan 583 . . . . . 6 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
87eqcomd 2804 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋𝑖)})
98neeq1d 3046 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋𝑖)} ≠ {𝑍}))
10 fvex 6658 . . . . . 6 (𝑋𝑖) ∈ V
11 sneqbg 4734 . . . . . 6 ((𝑋𝑖) ∈ V → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1210, 11mp1i 13 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1312necon3bid 3031 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
149, 13bitrd 282 . . 3 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
1514rabbidva 3425 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
162, 15eqtrd 2833 1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  {csn 4525  dom cdm 5519  cima 5522  Fun wfun 6318   Fn wfn 6319  cfv 6324  (class class class)co 7135   supp csupp 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-supp 7814
This theorem is referenced by:  suppvalfn  7820  suppfnss  7838  fnsuppres  7840  rmfsupp2  30917  domnmsuppn0  44771  rmsuppss  44772  mndpsuppss  44773  scmsuppss  44774  suppdm  44919
  Copyright terms: Public domain W3C validator