MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval1 Structured version   Visualization version   GIF version

Theorem suppval1 8122
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍

Proof of Theorem suppval1
StepHypRef Expression
1 suppval 8118 . . 3 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
213adant1 1130 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
3 funfn 6530 . . . . . . . . 9 (Fun 𝑋𝑋 Fn dom 𝑋)
43biimpi 216 . . . . . . . 8 (Fun 𝑋𝑋 Fn dom 𝑋)
543ad2ant1 1133 . . . . . . 7 ((Fun 𝑋𝑋𝑉𝑍𝑊) → 𝑋 Fn dom 𝑋)
6 fnsnfv 6922 . . . . . . 7 ((𝑋 Fn dom 𝑋𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
75, 6sylan 580 . . . . . 6 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋𝑖)} = (𝑋 “ {𝑖}))
87eqcomd 2735 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋𝑖)})
98neeq1d 2984 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋𝑖)} ≠ {𝑍}))
10 fvex 6853 . . . . . 6 (𝑋𝑖) ∈ V
11 sneqbg 4803 . . . . . 6 ((𝑋𝑖) ∈ V → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1210, 11mp1i 13 . . . . 5 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} = {𝑍} ↔ (𝑋𝑖) = 𝑍))
1312necon3bid 2969 . . . 4 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋𝑖)} ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
149, 13bitrd 279 . . 3 (((Fun 𝑋𝑋𝑉𝑍𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋𝑖) ≠ 𝑍))
1514rabbidva 3409 . 2 ((Fun 𝑋𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
162, 15eqtrd 2764 1 ((Fun 𝑋𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3402  Vcvv 3444  {csn 4585  dom cdm 5631  cima 5634  Fun wfun 6493   Fn wfn 6494  cfv 6499  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  suppvalfng  8123  suppvalfn  8124  suppfnss  8145  fnsuppres  8147  mndpsuppss  18674  rmfsupp2  33205  domnmsuppn0  48350  rmsuppss  48351  scmsuppss  48352  suppdm  48492
  Copyright terms: Public domain W3C validator