MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfidom Structured version   Visualization version   GIF version

Theorem infpwfidom 9926
Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
infpwfidom ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))

Proof of Theorem infpwfidom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snelpwi 5387 . . 3 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
2 snfi 8972 . . . 4 {𝑥} ∈ Fin
32a1i 11 . . 3 (𝑥𝐴 → {𝑥} ∈ Fin)
41, 3elind 4149 . 2 (𝑥𝐴 → {𝑥} ∈ (𝒫 𝐴 ∩ Fin))
5 sneqbg 4794 . . 3 (𝑥𝐴 → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
65adantr 480 . 2 ((𝑥𝐴𝑦𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
74, 6dom2 8924 1 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  𝒫 cpw 4549  {csn 4575   class class class wbr 5093  cdom 8873  Fincfn 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-1o 8391  df-en 8876  df-dom 8877  df-fin 8879
This theorem is referenced by:  infpwfien  9960  ttukeylem1  10407  canthnum  10547
  Copyright terms: Public domain W3C validator