![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slelttr | Structured version Visualization version GIF version |
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slelttr | âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â ((ðī âĪs ðĩ â§ ðĩ <s ðķ) â ðī <s ðķ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 27600 | . . . 4 âĒ ((ðī â No â§ ðĩ â No ) â (ðī âĪs ðĩ â ÂŽ ðĩ <s ðī)) | |
2 | 1 | 3adant3 1131 | . . 3 âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â (ðī âĪs ðĩ â ÂŽ ðĩ <s ðī)) |
3 | 2 | anbi1d 629 | . 2 âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â ((ðī âĪs ðĩ â§ ðĩ <s ðķ) â (ÂŽ ðĩ <s ðī â§ ðĩ <s ðķ))) |
4 | sltso 27524 | . . 3 âĒ <s Or No | |
5 | sotr2 5620 | . . 3 âĒ (( <s Or No â§ (ðī â No â§ ðĩ â No â§ ðķ â No )) â ((ÂŽ ðĩ <s ðī â§ ðĩ <s ðķ) â ðī <s ðķ)) | |
6 | 4, 5 | mpan 687 | . 2 âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â ((ÂŽ ðĩ <s ðī â§ ðĩ <s ðķ) â ðī <s ðķ)) |
7 | 3, 6 | sylbid 239 | 1 âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â ((ðī âĪs ðĩ â§ ðĩ <s ðķ) â ðī <s ðķ)) |
Colors of variables: wff setvar class |
Syntax hints: ÂŽ wn 3 â wi 4 â wb 205 â§ wa 395 â§ w3a 1086 â wcel 2105 class class class wbr 5148 Or wor 5587 No csur 27488 <s cslt 27489 âĪs csle 27592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1o 8472 df-2o 8473 df-no 27491 df-slt 27492 df-sle 27593 |
This theorem is referenced by: slelttrd 27609 |
Copyright terms: Public domain | W3C validator |