Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slelttr Structured version   Visualization version   GIF version

Theorem slelttr 34034
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slelttr ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))

Proof of Theorem slelttr
StepHypRef Expression
1 slenlt 34029 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
213adant3 1131 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
32anbi1d 630 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) ↔ (¬ 𝐵 <s 𝐴𝐵 <s 𝐶)))
4 sltso 26907 . . 3 <s Or No
5 sotr2 5553 . . 3 (( <s Or No ∧ (𝐴 No 𝐵 No 𝐶 No )) → ((¬ 𝐵 <s 𝐴𝐵 <s 𝐶) → 𝐴 <s 𝐶))
64, 5mpan 687 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((¬ 𝐵 <s 𝐴𝐵 <s 𝐶) → 𝐴 <s 𝐶))
73, 6sylbid 239 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wcel 2105   class class class wbr 5087   Or wor 5520   No csur 26871   <s cslt 26872   ≤s csle 34021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-ord 6292  df-on 6293  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-fv 6474  df-1o 8346  df-2o 8347  df-no 26874  df-slt 26875  df-sle 34022
This theorem is referenced by:  slelttrd  34038
  Copyright terms: Public domain W3C validator