![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slelttr | Structured version Visualization version GIF version |
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slelttr | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 32758 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
2 | 1 | 3adant3 1112 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
3 | 2 | anbi1d 620 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) ↔ (¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶))) |
4 | sltso 32708 | . . 3 ⊢ <s Or No | |
5 | sotr2 5357 | . . 3 ⊢ (( <s Or No ∧ (𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No )) → ((¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | |
6 | 4, 5 | mpan 677 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
7 | 3, 6 | sylbid 232 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2050 class class class wbr 4929 Or wor 5325 No csur 32674 <s cslt 32675 ≤s csle 32750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-ord 6032 df-on 6033 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-fv 6196 df-1o 7905 df-2o 7906 df-no 32677 df-slt 32678 df-sle 32751 |
This theorem is referenced by: slelttrd 32767 |
Copyright terms: Public domain | W3C validator |