MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slelttr Structured version   Visualization version   GIF version

Theorem slelttr 27669
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slelttr ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))

Proof of Theorem slelttr
StepHypRef Expression
1 slenlt 27664 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
213adant3 1132 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
32anbi1d 631 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) ↔ (¬ 𝐵 <s 𝐴𝐵 <s 𝐶)))
4 sltso 27588 . . 3 <s Or No
5 sotr2 5580 . . 3 (( <s Or No ∧ (𝐴 No 𝐵 No 𝐶 No )) → ((¬ 𝐵 <s 𝐴𝐵 <s 𝐶) → 𝐴 <s 𝐶))
64, 5mpan 690 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((¬ 𝐵 <s 𝐴𝐵 <s 𝐶) → 𝐴 <s 𝐶))
73, 6sylbid 240 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5107   Or wor 5545   No csur 27551   <s cslt 27552   ≤s csle 27656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-sle 27657
This theorem is referenced by:  slelttrd  27673
  Copyright terms: Public domain W3C validator