Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slelttr | Structured version Visualization version GIF version |
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slelttr | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 34000 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
3 | 2 | anbi1d 631 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) ↔ (¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶))) |
4 | sltso 33924 | . . 3 ⊢ <s Or No | |
5 | sotr2 5546 | . . 3 ⊢ (( <s Or No ∧ (𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No )) → ((¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | |
6 | 4, 5 | mpan 688 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((¬ 𝐵 <s 𝐴 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
7 | 3, 6 | sylbid 239 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 class class class wbr 5081 Or wor 5513 No csur 33888 <s cslt 33889 ≤s csle 33992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-1o 8328 df-2o 8329 df-no 33891 df-slt 33892 df-sle 33993 |
This theorem is referenced by: slelttrd 34009 |
Copyright terms: Public domain | W3C validator |