MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slelttr Structured version   Visualization version   GIF version

Theorem slelttr 27716
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slelttr ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))

Proof of Theorem slelttr
StepHypRef Expression
1 slenlt 27711 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
213adant3 1132 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
32anbi1d 631 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) ↔ (¬ 𝐵 <s 𝐴𝐵 <s 𝐶)))
4 sltso 27635 . . 3 <s Or No
5 sotr2 5563 . . 3 (( <s Or No ∧ (𝐴 No 𝐵 No 𝐶 No )) → ((¬ 𝐵 <s 𝐴𝐵 <s 𝐶) → 𝐴 <s 𝐶))
64, 5mpan 690 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((¬ 𝐵 <s 𝐴𝐵 <s 𝐶) → 𝐴 <s 𝐶))
73, 6sylbid 240 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2113   class class class wbr 5095   Or wor 5528   No csur 27598   <s cslt 27599   ≤s csle 27703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-1o 8394  df-2o 8395  df-no 27601  df-slt 27602  df-sle 27704
This theorem is referenced by:  slelttrd  27720
  Copyright terms: Public domain W3C validator