| Step | Hyp | Ref
| Expression |
| 1 | | hashf 14377 |
. . . . 5
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
| 2 | | ffun 6739 |
. . . . 5
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → Fun
♯) |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Fun
♯ |
| 4 | | erdszelem.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) |
| 5 | | erdsze.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | | erdsze.f |
. . . . . 6
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
| 7 | | erdszelem.k |
. . . . . 6
⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| 8 | | erdszelem.o |
. . . . . 6
⊢ 𝑂 Or ℝ |
| 9 | 5, 6, 7, 8 | erdszelem5 35200 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
| 10 | 4, 9 | mpdan 687 |
. . . 4
⊢ (𝜑 → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
| 11 | | fvelima 6974 |
. . . 4
⊢ ((Fun
♯ ∧ (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
| 12 | 3, 10, 11 | sylancr 587 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
| 13 | | eqid 2737 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
| 14 | 13 | erdszelem1 35196 |
. . . . 5
⊢ (𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ↔ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) |
| 15 | | fzfid 14014 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ∈ Fin) |
| 16 | | simplr1 1216 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐴)) |
| 17 | | ssfi 9213 |
. . . . . . . . . . 11
⊢
(((1...𝐴) ∈ Fin
∧ 𝑓 ⊆ (1...𝐴)) → 𝑓 ∈ Fin) |
| 18 | 15, 16, 17 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ∈ Fin) |
| 19 | | hashcl 14395 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Fin →
(♯‘𝑓) ∈
ℕ0) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈
ℕ0) |
| 21 | 20 | nn0red 12588 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈ ℝ) |
| 22 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} |
| 23 | 22 | erdszelem2 35197 |
. . . . . . . . . . . . . 14
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ) |
| 24 | 23 | simpri 485 |
. . . . . . . . . . . . 13
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ |
| 25 | | nnssre 12270 |
. . . . . . . . . . . . 13
⊢ ℕ
⊆ ℝ |
| 26 | 24, 25 | sstri 3993 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ |
| 27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ) |
| 28 | 4 | elfzelzd 13565 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 29 | | erdszelem.b |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ (1...𝑁)) |
| 30 | 29 | elfzelzd 13565 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 31 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ) |
| 32 | 4, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ∈ ℕ) |
| 33 | 32 | nnred 12281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 34 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ∈ (1...𝑁) → 𝐵 ∈ ℕ) |
| 35 | 29, 34 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈ ℕ) |
| 36 | 35 | nnred 12281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 37 | | erdszelem.l |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 < 𝐵) |
| 38 | 33, 36, 37 | ltled 11409 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 39 | | eluz2 12884 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈
(ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
| 40 | 28, 30, 38, 39 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐴)) |
| 41 | | fzss2 13604 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝐵)) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝐵)) |
| 43 | 42 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝐵)) |
| 44 | 16, 43 | sstrd 3994 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐵)) |
| 45 | | elfz1end 13594 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵)) |
| 46 | 35, 45 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ (1...𝐵)) |
| 47 | 46 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝐵)) |
| 48 | 47 | snssd 4809 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝐵)) |
| 49 | 44, 48 | unssd 4192 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝐵)) |
| 50 | | simplr2 1217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
| 51 | | f1f 6804 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ) |
| 52 | 6, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:(1...𝑁)⟶ℝ) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐹:(1...𝑁)⟶ℝ) |
| 54 | | elfzuz3 13561 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘𝐴)) |
| 55 | | fzss2 13604 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝑁)) |
| 56 | 4, 54, 55 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝑁)) |
| 57 | 56 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝑁)) |
| 58 | 16, 57 | sstrd 3994 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝑁)) |
| 59 | | fzssuz 13605 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1...𝑁) ⊆
(ℤ≥‘1) |
| 60 | | uzssz 12899 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(ℤ≥‘1) ⊆ ℤ |
| 61 | | zssre 12620 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℤ
⊆ ℝ |
| 62 | 60, 61 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘1) ⊆ ℝ |
| 63 | 59, 62 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(1...𝑁) ⊆
ℝ |
| 64 | | ltso 11341 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ < Or
ℝ |
| 65 | | soss 5612 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1...𝑁) ⊆
ℝ → ( < Or ℝ → < Or (1...𝑁))) |
| 66 | 63, 64, 65 | mp2 9 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ < Or
(1...𝑁) |
| 67 | | soisores 7347 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁))) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 68 | 66, 8, 67 | mpanl12 702 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 69 | 53, 58, 68 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 70 | 50, 69 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 71 | 70 | r19.21bi 3251 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 72 | 16 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝐴)) |
| 73 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (1...𝐴) → 𝑧 ≤ 𝐴) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ≤ 𝐴) |
| 75 | 58 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝑁)) |
| 76 | 63, 75 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ ℝ) |
| 77 | 4 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ (1...𝑁)) |
| 78 | 77, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℕ) |
| 79 | 78 | nnred 12281 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℝ) |
| 80 | 76, 79 | lenltd 11407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑧)) |
| 81 | 74, 80 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ 𝐴 < 𝑧) |
| 82 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
| 83 | | simplr3 1218 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐴 ∈ 𝑓) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ 𝑓) |
| 85 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ 𝑓) |
| 86 | | isorel 7346 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ ((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧))) |
| 87 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝐴) = (𝐹‘𝐴)) |
| 88 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝑧) = (𝐹‘𝑧)) |
| 89 | 87, 88 | breqan12d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
| 90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
| 91 | 86, 90 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
| 92 | 82, 84, 85, 91 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
| 93 | 81, 92 | mtbid 324 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧)) |
| 94 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴)𝑂(𝐹‘𝐵)) |
| 95 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐹:(1...𝑁)⟶ℝ) |
| 96 | 95, 75 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧) ∈ ℝ) |
| 97 | 95, 77 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴) ∈ ℝ) |
| 98 | 29 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝑁)) |
| 99 | 98 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐵 ∈ (1...𝑁)) |
| 100 | 95, 99 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐵) ∈ ℝ) |
| 101 | | sotr2 5626 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑂 Or ℝ ∧ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ)) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
| 102 | 8, 101 | mpan 690 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
| 103 | 96, 97, 100, 102 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
| 104 | 93, 94, 103 | mp2and 699 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧)𝑂(𝐹‘𝐵)) |
| 105 | 104 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
| 106 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ {𝐵} → 𝑤 = 𝐵) |
| 107 | 106 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ {𝐵} → (𝐹‘𝑤) = (𝐹‘𝐵)) |
| 108 | 107 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ {𝐵} → ((𝐹‘𝑧)𝑂(𝐹‘𝑤) ↔ (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
| 109 | 108 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵)))) |
| 110 | 105, 109 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑤 ∈ {𝐵} → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 111 | 110 | ralrimiv 3145 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 112 | | ralunb 4197 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
(𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 113 | 71, 111, 112 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 114 | 113 | ralrimiva 3146 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 115 | 49 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → 𝑤 ∈ (1...𝐵)) |
| 116 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ≤ 𝐵) |
| 117 | 116 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ≤ 𝐵) |
| 118 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℤ) |
| 119 | 118 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℝ) |
| 120 | 119 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ∈ ℝ) |
| 121 | 36 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝐵 ∈ ℝ) |
| 122 | 120, 121 | lenltd 11407 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
| 123 | 117, 122 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → ¬ 𝐵 < 𝑤) |
| 124 | 115, 123 | syldan 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → ¬ 𝐵 < 𝑤) |
| 125 | 124 | pm2.21d 121 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 126 | 125 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 127 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {𝐵} → 𝑧 = 𝐵) |
| 128 | 127 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝐵} → (𝑧 < 𝑤 ↔ 𝐵 < 𝑤)) |
| 129 | 128 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 130 | 129 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ {𝐵} → (∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 131 | 126, 130 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑧 ∈ {𝐵} → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 132 | 131 | ralrimiv 3145 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 133 | | ralunb 4197 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
(𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 134 | 114, 132,
133 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
| 135 | 98 | snssd 4809 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝑁)) |
| 136 | 58, 135 | unssd 4192 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) |
| 137 | | soisores 7347 |
. . . . . . . . . . . . . . . . 17
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁))) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 138 | 66, 8, 137 | mpanl12 702 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 139 | 53, 136, 138 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
| 140 | 134, 139 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵})))) |
| 141 | | ssun2 4179 |
. . . . . . . . . . . . . . 15
⊢ {𝐵} ⊆ (𝑓 ∪ {𝐵}) |
| 142 | | snssg 4783 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ (1...𝐵) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
| 143 | 47, 142 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
| 144 | 141, 143 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (𝑓 ∪ {𝐵})) |
| 145 | 22 | erdszelem1 35196 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} ↔ ((𝑓 ∪ {𝐵}) ⊆ (1...𝐵) ∧ (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ∧ 𝐵 ∈ (𝑓 ∪ {𝐵}))) |
| 146 | 49, 140, 144, 145 | syl3anbrc 1344 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) |
| 147 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
| 148 | | snex 5436 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵} ∈ V |
| 149 | 147, 148 | unex 7764 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∪ {𝐵}) ∈ V |
| 150 | 1 | fdmi 6747 |
. . . . . . . . . . . . . . 15
⊢ dom
♯ = V |
| 151 | 149, 150 | eleqtrri 2840 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∪ {𝐵}) ∈ dom ♯ |
| 152 | | funfvima 7250 |
. . . . . . . . . . . . . 14
⊢ ((Fun
♯ ∧ (𝑓 ∪
{𝐵}) ∈ dom ♯)
→ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}))) |
| 153 | 3, 151, 152 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
| 154 | 146, 153 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
| 155 | 154 | ne0d 4342 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅) |
| 156 | 23 | simpli 483 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin |
| 157 | | fimaxre2 12213 |
. . . . . . . . . . . 12
⊢
(((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
| 158 | 27, 156, 157 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
| 159 | 33, 36 | ltnled 11408 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 160 | 37, 159 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) |
| 161 | | elfzle2 13568 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ (1...𝐴) → 𝐵 ≤ 𝐴) |
| 162 | 160, 161 | nsyl 140 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝐵 ∈ (1...𝐴)) |
| 163 | 162 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ (1...𝐴)) |
| 164 | 16, 163 | ssneldd 3986 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ 𝑓) |
| 165 | | hashunsng 14431 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (1...𝑁) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
| 166 | 98, 165 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
| 167 | 18, 164, 166 | mp2and 699 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1)) |
| 168 | 167, 154 | eqeltrrd 2842 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
| 169 | | suprub 12229 |
. . . . . . . . . . 11
⊢
((((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) ∧ ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) → ((♯‘𝑓) + 1) ≤ sup((♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
| 170 | 27, 155, 158, 168, 169 | syl31anc 1375 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
| 171 | 5, 6, 7 | erdszelem3 35198 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (1...𝑁) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
| 172 | 29, 171 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
| 173 | 172 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
| 174 | 170, 173 | breqtrrd 5171 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵)) |
| 175 | 5, 6, 7, 8 | erdszelem6 35201 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
| 176 | 175, 29 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾‘𝐵) ∈ ℕ) |
| 177 | 176 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈ ℕ) |
| 178 | 177 | nnnn0d 12587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈
ℕ0) |
| 179 | | nn0ltp1le 12676 |
. . . . . . . . . 10
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ (𝐾‘𝐵) ∈ ℕ0) →
((♯‘𝑓) <
(𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
| 180 | 20, 178, 179 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) < (𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
| 181 | 174, 180 | mpbird 257 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) < (𝐾‘𝐵)) |
| 182 | 21, 181 | ltned 11397 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ≠ (𝐾‘𝐵)) |
| 183 | 182 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵))) |
| 184 | | neeq1 3003 |
. . . . . . 7
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → ((♯‘𝑓) ≠ (𝐾‘𝐵) ↔ (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
| 185 | 184 | imbi2d 340 |
. . . . . 6
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → (((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵)) ↔ ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
| 186 | 183, 185 | syl5ibcom 245 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
| 187 | 14, 186 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
| 188 | 187 | rexlimdva 3155 |
. . 3
⊢ (𝜑 → (∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
| 189 | 12, 188 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
| 190 | 189 | necon2bd 2956 |
1
⊢ (𝜑 → ((𝐾‘𝐴) = (𝐾‘𝐵) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝐵))) |