Step | Hyp | Ref
| Expression |
1 | | hashf 13980 |
. . . . 5
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
2 | | ffun 6587 |
. . . . 5
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → Fun
♯) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Fun
♯ |
4 | | erdszelem.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) |
5 | | erdsze.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | | erdsze.f |
. . . . . 6
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
7 | | erdszelem.k |
. . . . . 6
⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
8 | | erdszelem.o |
. . . . . 6
⊢ 𝑂 Or ℝ |
9 | 5, 6, 7, 8 | erdszelem5 33057 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
10 | 4, 9 | mpdan 683 |
. . . 4
⊢ (𝜑 → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
11 | | fvelima 6817 |
. . . 4
⊢ ((Fun
♯ ∧ (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
12 | 3, 10, 11 | sylancr 586 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
13 | | eqid 2738 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
14 | 13 | erdszelem1 33053 |
. . . . 5
⊢ (𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ↔ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) |
15 | | fzfid 13621 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ∈ Fin) |
16 | | simplr1 1213 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐴)) |
17 | | ssfi 8918 |
. . . . . . . . . . 11
⊢
(((1...𝐴) ∈ Fin
∧ 𝑓 ⊆ (1...𝐴)) → 𝑓 ∈ Fin) |
18 | 15, 16, 17 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ∈ Fin) |
19 | | hashcl 13999 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Fin →
(♯‘𝑓) ∈
ℕ0) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈
ℕ0) |
21 | 20 | nn0red 12224 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈ ℝ) |
22 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} |
23 | 22 | erdszelem2 33054 |
. . . . . . . . . . . . . 14
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ) |
24 | 23 | simpri 485 |
. . . . . . . . . . . . 13
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ |
25 | | nnssre 11907 |
. . . . . . . . . . . . 13
⊢ ℕ
⊆ ℝ |
26 | 24, 25 | sstri 3926 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ |
27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ) |
28 | 4 | elfzelzd 13186 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℤ) |
29 | | erdszelem.b |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ (1...𝑁)) |
30 | 29 | elfzelzd 13186 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈ ℤ) |
31 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ) |
32 | 4, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ∈ ℕ) |
33 | 32 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℝ) |
34 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ∈ (1...𝑁) → 𝐵 ∈ ℕ) |
35 | 29, 34 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈ ℕ) |
36 | 35 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ ℝ) |
37 | | erdszelem.l |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 < 𝐵) |
38 | 33, 36, 37 | ltled 11053 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
39 | | eluz2 12517 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈
(ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
40 | 28, 30, 38, 39 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐴)) |
41 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝐵)) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝐵)) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝐵)) |
44 | 16, 43 | sstrd 3927 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐵)) |
45 | | elfz1end 13215 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵)) |
46 | 35, 45 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ (1...𝐵)) |
47 | 46 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝐵)) |
48 | 47 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝐵)) |
49 | 44, 48 | unssd 4116 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝐵)) |
50 | | simplr2 1214 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
51 | | f1f 6654 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ) |
52 | 6, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:(1...𝑁)⟶ℝ) |
53 | 52 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐹:(1...𝑁)⟶ℝ) |
54 | | elfzuz3 13182 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘𝐴)) |
55 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝑁)) |
56 | 4, 54, 55 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝑁)) |
57 | 56 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝑁)) |
58 | 16, 57 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝑁)) |
59 | | fzssuz 13226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1...𝑁) ⊆
(ℤ≥‘1) |
60 | | uzssz 12532 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(ℤ≥‘1) ⊆ ℤ |
61 | | zssre 12256 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℤ
⊆ ℝ |
62 | 60, 61 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘1) ⊆ ℝ |
63 | 59, 62 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(1...𝑁) ⊆
ℝ |
64 | | ltso 10986 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ < Or
ℝ |
65 | | soss 5514 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1...𝑁) ⊆
ℝ → ( < Or ℝ → < Or (1...𝑁))) |
66 | 63, 64, 65 | mp2 9 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ < Or
(1...𝑁) |
67 | | soisores 7178 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁))) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
68 | 66, 8, 67 | mpanl12 698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
69 | 53, 58, 68 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
70 | 50, 69 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
71 | 70 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
72 | 16 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝐴)) |
73 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (1...𝐴) → 𝑧 ≤ 𝐴) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ≤ 𝐴) |
75 | 58 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝑁)) |
76 | 63, 75 | sselid 3915 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ ℝ) |
77 | 4 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ (1...𝑁)) |
78 | 77, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℕ) |
79 | 78 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℝ) |
80 | 76, 79 | lenltd 11051 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑧)) |
81 | 74, 80 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ 𝐴 < 𝑧) |
82 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
83 | | simplr3 1215 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐴 ∈ 𝑓) |
84 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ 𝑓) |
85 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ 𝑓) |
86 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ ((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧))) |
87 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝐴) = (𝐹‘𝐴)) |
88 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝑧) = (𝐹‘𝑧)) |
89 | 87, 88 | breqan12d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
91 | 86, 90 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
92 | 82, 84, 85, 91 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
93 | 81, 92 | mtbid 323 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧)) |
94 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴)𝑂(𝐹‘𝐵)) |
95 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐹:(1...𝑁)⟶ℝ) |
96 | 95, 75 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧) ∈ ℝ) |
97 | 95, 77 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴) ∈ ℝ) |
98 | 29 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝑁)) |
99 | 98 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐵 ∈ (1...𝑁)) |
100 | 95, 99 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐵) ∈ ℝ) |
101 | | sotr2 5526 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑂 Or ℝ ∧ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ)) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
102 | 8, 101 | mpan 686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
103 | 96, 97, 100, 102 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
104 | 93, 94, 103 | mp2and 695 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧)𝑂(𝐹‘𝐵)) |
105 | 104 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
106 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ {𝐵} → 𝑤 = 𝐵) |
107 | 106 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ {𝐵} → (𝐹‘𝑤) = (𝐹‘𝐵)) |
108 | 107 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ {𝐵} → ((𝐹‘𝑧)𝑂(𝐹‘𝑤) ↔ (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
109 | 108 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵)))) |
110 | 105, 109 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑤 ∈ {𝐵} → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
111 | 110 | ralrimiv 3106 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
112 | | ralunb 4121 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
(𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
113 | 71, 111, 112 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
114 | 113 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
115 | 49 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → 𝑤 ∈ (1...𝐵)) |
116 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ≤ 𝐵) |
117 | 116 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ≤ 𝐵) |
118 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℤ) |
119 | 118 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℝ) |
120 | 119 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ∈ ℝ) |
121 | 36 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝐵 ∈ ℝ) |
122 | 120, 121 | lenltd 11051 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
123 | 117, 122 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → ¬ 𝐵 < 𝑤) |
124 | 115, 123 | syldan 590 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → ¬ 𝐵 < 𝑤) |
125 | 124 | pm2.21d 121 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
126 | 125 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
127 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {𝐵} → 𝑧 = 𝐵) |
128 | 127 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝐵} → (𝑧 < 𝑤 ↔ 𝐵 < 𝑤)) |
129 | 128 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
130 | 129 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ {𝐵} → (∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
131 | 126, 130 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑧 ∈ {𝐵} → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
132 | 131 | ralrimiv 3106 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
133 | | ralunb 4121 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
(𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
134 | 114, 132,
133 | sylanbrc 582 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
135 | 98 | snssd 4739 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝑁)) |
136 | 58, 135 | unssd 4116 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) |
137 | | soisores 7178 |
. . . . . . . . . . . . . . . . 17
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁))) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
138 | 66, 8, 137 | mpanl12 698 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
139 | 53, 136, 138 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
140 | 134, 139 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵})))) |
141 | | ssun2 4103 |
. . . . . . . . . . . . . . 15
⊢ {𝐵} ⊆ (𝑓 ∪ {𝐵}) |
142 | | snssg 4715 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ (1...𝐵) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
143 | 47, 142 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
144 | 141, 143 | mpbiri 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (𝑓 ∪ {𝐵})) |
145 | 22 | erdszelem1 33053 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} ↔ ((𝑓 ∪ {𝐵}) ⊆ (1...𝐵) ∧ (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ∧ 𝐵 ∈ (𝑓 ∪ {𝐵}))) |
146 | 49, 140, 144, 145 | syl3anbrc 1341 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) |
147 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
148 | | snex 5349 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵} ∈ V |
149 | 147, 148 | unex 7574 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∪ {𝐵}) ∈ V |
150 | 1 | fdmi 6596 |
. . . . . . . . . . . . . . 15
⊢ dom
♯ = V |
151 | 149, 150 | eleqtrri 2838 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∪ {𝐵}) ∈ dom ♯ |
152 | | funfvima 7088 |
. . . . . . . . . . . . . 14
⊢ ((Fun
♯ ∧ (𝑓 ∪
{𝐵}) ∈ dom ♯)
→ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}))) |
153 | 3, 151, 152 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
154 | 146, 153 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
155 | 154 | ne0d 4266 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅) |
156 | 23 | simpli 483 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin |
157 | | fimaxre2 11850 |
. . . . . . . . . . . 12
⊢
(((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
158 | 27, 156, 157 | sylancl 585 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
159 | 33, 36 | ltnled 11052 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
160 | 37, 159 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) |
161 | | elfzle2 13189 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ (1...𝐴) → 𝐵 ≤ 𝐴) |
162 | 160, 161 | nsyl 140 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝐵 ∈ (1...𝐴)) |
163 | 162 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ (1...𝐴)) |
164 | 16, 163 | ssneldd 3920 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ 𝑓) |
165 | | hashunsng 14035 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (1...𝑁) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
166 | 98, 165 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
167 | 18, 164, 166 | mp2and 695 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1)) |
168 | 167, 154 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
169 | | suprub 11866 |
. . . . . . . . . . 11
⊢
((((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) ∧ ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) → ((♯‘𝑓) + 1) ≤ sup((♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
170 | 27, 155, 158, 168, 169 | syl31anc 1371 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
171 | 5, 6, 7 | erdszelem3 33055 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (1...𝑁) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
172 | 29, 171 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
173 | 172 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
174 | 170, 173 | breqtrrd 5098 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵)) |
175 | 5, 6, 7, 8 | erdszelem6 33058 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
176 | 175, 29 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾‘𝐵) ∈ ℕ) |
177 | 176 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈ ℕ) |
178 | 177 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈
ℕ0) |
179 | | nn0ltp1le 12308 |
. . . . . . . . . 10
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ (𝐾‘𝐵) ∈ ℕ0) →
((♯‘𝑓) <
(𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
180 | 20, 178, 179 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) < (𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
181 | 174, 180 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) < (𝐾‘𝐵)) |
182 | 21, 181 | ltned 11041 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ≠ (𝐾‘𝐵)) |
183 | 182 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵))) |
184 | | neeq1 3005 |
. . . . . . 7
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → ((♯‘𝑓) ≠ (𝐾‘𝐵) ↔ (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
185 | 184 | imbi2d 340 |
. . . . . 6
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → (((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵)) ↔ ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
186 | 183, 185 | syl5ibcom 244 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
187 | 14, 186 | sylan2b 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
188 | 187 | rexlimdva 3212 |
. . 3
⊢ (𝜑 → (∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
189 | 12, 188 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
190 | 189 | necon2bd 2958 |
1
⊢ (𝜑 → ((𝐾‘𝐴) = (𝐾‘𝐵) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝐵))) |