Step | Hyp | Ref
| Expression |
1 | | hashf 13417 |
. . . . 5
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
2 | | ffun 6280 |
. . . . 5
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → Fun
♯) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Fun
♯ |
4 | | erdszelem.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) |
5 | | erdsze.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | | erdsze.f |
. . . . . 6
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
7 | | erdszelem.k |
. . . . . 6
⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
8 | | erdszelem.o |
. . . . . 6
⊢ 𝑂 Or ℝ |
9 | 5, 6, 7, 8 | erdszelem5 31722 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
10 | 4, 9 | mpdan 680 |
. . . 4
⊢ (𝜑 → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
11 | | fvelima 6494 |
. . . 4
⊢ ((Fun
♯ ∧ (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
12 | 3, 10, 11 | sylancr 583 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
13 | | eqid 2824 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
14 | 13 | erdszelem1 31718 |
. . . . 5
⊢ (𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ↔ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) |
15 | | fzfid 13066 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ∈ Fin) |
16 | | simplr1 1281 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐴)) |
17 | | ssfi 8448 |
. . . . . . . . . . 11
⊢
(((1...𝐴) ∈ Fin
∧ 𝑓 ⊆ (1...𝐴)) → 𝑓 ∈ Fin) |
18 | 15, 16, 17 | syl2anc 581 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ∈ Fin) |
19 | | hashcl 13436 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Fin →
(♯‘𝑓) ∈
ℕ0) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈
ℕ0) |
21 | 20 | nn0red 11678 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈ ℝ) |
22 | | eqid 2824 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} |
23 | 22 | erdszelem2 31719 |
. . . . . . . . . . . . . 14
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ) |
24 | 23 | simpri 481 |
. . . . . . . . . . . . 13
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ |
25 | | nnssre 11353 |
. . . . . . . . . . . . 13
⊢ ℕ
⊆ ℝ |
26 | 24, 25 | sstri 3835 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ |
27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ) |
28 | | elfzelz 12634 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℤ) |
29 | 4, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℤ) |
30 | | erdszelem.b |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ (1...𝑁)) |
31 | | elfzelz 12634 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ (1...𝑁) → 𝐵 ∈ ℤ) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈ ℤ) |
33 | | elfznn 12662 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ) |
34 | 4, 33 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ∈ ℕ) |
35 | 34 | nnred 11366 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℝ) |
36 | | elfznn 12662 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ∈ (1...𝑁) → 𝐵 ∈ ℕ) |
37 | 30, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈ ℕ) |
38 | 37 | nnred 11366 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ ℝ) |
39 | | erdszelem.l |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 < 𝐵) |
40 | 35, 38, 39 | ltled 10503 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
41 | | eluz2 11973 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈
(ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
42 | 29, 32, 40, 41 | syl3anbrc 1449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐴)) |
43 | | fzss2 12673 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝐵)) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝐵)) |
45 | 44 | ad2antrr 719 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝐵)) |
46 | 16, 45 | sstrd 3836 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐵)) |
47 | | elfz1end 12663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵)) |
48 | 37, 47 | sylib 210 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ (1...𝐵)) |
49 | 48 | ad2antrr 719 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝐵)) |
50 | 49 | snssd 4557 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝐵)) |
51 | 46, 50 | unssd 4015 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝐵)) |
52 | | simplr2 1283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
53 | | f1f 6337 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ) |
54 | 6, 53 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:(1...𝑁)⟶ℝ) |
55 | 54 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐹:(1...𝑁)⟶ℝ) |
56 | | elfzuz3 12631 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘𝐴)) |
57 | | fzss2 12673 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝑁)) |
58 | 4, 56, 57 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝑁)) |
59 | 58 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝑁)) |
60 | 16, 59 | sstrd 3836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝑁)) |
61 | | fzssuz 12674 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1...𝑁) ⊆
(ℤ≥‘1) |
62 | | uzssz 11987 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(ℤ≥‘1) ⊆ ℤ |
63 | | zssre 11710 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℤ
⊆ ℝ |
64 | 62, 63 | sstri 3835 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘1) ⊆ ℝ |
65 | 61, 64 | sstri 3835 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(1...𝑁) ⊆
ℝ |
66 | | ltso 10436 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ < Or
ℝ |
67 | | soss 5280 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1...𝑁) ⊆
ℝ → ( < Or ℝ → < Or (1...𝑁))) |
68 | 65, 66, 67 | mp2 9 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ < Or
(1...𝑁) |
69 | | soisores 6831 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁))) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
70 | 68, 8, 69 | mpanl12 695 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
71 | 55, 60, 70 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
72 | 52, 71 | mpbid 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
73 | 72 | r19.21bi 3140 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
74 | 16 | sselda 3826 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝐴)) |
75 | | elfzle2 12637 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (1...𝐴) → 𝑧 ≤ 𝐴) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ≤ 𝐴) |
77 | 60 | sselda 3826 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝑁)) |
78 | 65, 77 | sseldi 3824 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ ℝ) |
79 | 4 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ (1...𝑁)) |
80 | 79, 33 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℕ) |
81 | 80 | nnred 11366 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℝ) |
82 | 78, 81 | lenltd 10501 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑧)) |
83 | 76, 82 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ 𝐴 < 𝑧) |
84 | 52 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
85 | | simplr3 1285 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐴 ∈ 𝑓) |
86 | 85 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ 𝑓) |
87 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ 𝑓) |
88 | | isorel 6830 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ ((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧))) |
89 | | fvres 6451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝐴) = (𝐹‘𝐴)) |
90 | | fvres 6451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝑧) = (𝐹‘𝑧)) |
91 | 89, 90 | breqan12d 4888 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
92 | 91 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
93 | 88, 92 | bitrd 271 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
94 | 84, 86, 87, 93 | syl12anc 872 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
95 | 83, 94 | mtbid 316 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧)) |
96 | | simplr 787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴)𝑂(𝐹‘𝐵)) |
97 | 55 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐹:(1...𝑁)⟶ℝ) |
98 | 97, 77 | ffvelrnd 6608 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧) ∈ ℝ) |
99 | 97, 79 | ffvelrnd 6608 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴) ∈ ℝ) |
100 | 30 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝑁)) |
101 | 100 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐵 ∈ (1...𝑁)) |
102 | 97, 101 | ffvelrnd 6608 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐵) ∈ ℝ) |
103 | | sotr2 5291 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑂 Or ℝ ∧ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ)) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
104 | 8, 103 | mpan 683 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
105 | 98, 99, 102, 104 | syl3anc 1496 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
106 | 95, 96, 105 | mp2and 692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧)𝑂(𝐹‘𝐵)) |
107 | 106 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
108 | | elsni 4413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ {𝐵} → 𝑤 = 𝐵) |
109 | 108 | fveq2d 6436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ {𝐵} → (𝐹‘𝑤) = (𝐹‘𝐵)) |
110 | 109 | breq2d 4884 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ {𝐵} → ((𝐹‘𝑧)𝑂(𝐹‘𝑤) ↔ (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
111 | 110 | imbi2d 332 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵)))) |
112 | 107, 111 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑤 ∈ {𝐵} → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
113 | 112 | ralrimiv 3173 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
114 | | ralunb 4020 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
(𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
115 | 73, 113, 114 | sylanbrc 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
116 | 115 | ralrimiva 3174 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
117 | 51 | sselda 3826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → 𝑤 ∈ (1...𝐵)) |
118 | | elfzle2 12637 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ≤ 𝐵) |
119 | 118 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ≤ 𝐵) |
120 | | elfzelz 12634 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℤ) |
121 | 120 | zred 11809 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℝ) |
122 | 121 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ∈ ℝ) |
123 | 38 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝐵 ∈ ℝ) |
124 | 122, 123 | lenltd 10501 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
125 | 119, 124 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → ¬ 𝐵 < 𝑤) |
126 | 117, 125 | syldan 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → ¬ 𝐵 < 𝑤) |
127 | 126 | pm2.21d 119 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
128 | 127 | ralrimiva 3174 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
129 | | elsni 4413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {𝐵} → 𝑧 = 𝐵) |
130 | 129 | breq1d 4882 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝐵} → (𝑧 < 𝑤 ↔ 𝐵 < 𝑤)) |
131 | 130 | imbi1d 333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
132 | 131 | ralbidv 3194 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ {𝐵} → (∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
133 | 128, 132 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑧 ∈ {𝐵} → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
134 | 133 | ralrimiv 3173 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
135 | | ralunb 4020 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
(𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
136 | 116, 134,
135 | sylanbrc 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
137 | 100 | snssd 4557 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝑁)) |
138 | 60, 137 | unssd 4015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) |
139 | | soisores 6831 |
. . . . . . . . . . . . . . . . 17
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁))) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
140 | 68, 8, 139 | mpanl12 695 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
141 | 55, 138, 140 | syl2anc 581 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
142 | 136, 141 | mpbird 249 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵})))) |
143 | | ssun2 4003 |
. . . . . . . . . . . . . . 15
⊢ {𝐵} ⊆ (𝑓 ∪ {𝐵}) |
144 | | snssg 4533 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ (1...𝐵) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
145 | 49, 144 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
146 | 143, 145 | mpbiri 250 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (𝑓 ∪ {𝐵})) |
147 | 22 | erdszelem1 31718 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} ↔ ((𝑓 ∪ {𝐵}) ⊆ (1...𝐵) ∧ (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ∧ 𝐵 ∈ (𝑓 ∪ {𝐵}))) |
148 | 51, 142, 146, 147 | syl3anbrc 1449 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) |
149 | | vex 3416 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
150 | | snex 5128 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵} ∈ V |
151 | 149, 150 | unex 7215 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∪ {𝐵}) ∈ V |
152 | 1 | fdmi 6287 |
. . . . . . . . . . . . . . 15
⊢ dom
♯ = V |
153 | 151, 152 | eleqtrri 2904 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∪ {𝐵}) ∈ dom ♯ |
154 | | funfvima 6747 |
. . . . . . . . . . . . . 14
⊢ ((Fun
♯ ∧ (𝑓 ∪
{𝐵}) ∈ dom ♯)
→ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}))) |
155 | 3, 153, 154 | mp2an 685 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
156 | 148, 155 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
157 | 156 | ne0d 4150 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅) |
158 | 23 | simpli 478 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin |
159 | | fimaxre2 11298 |
. . . . . . . . . . . 12
⊢
(((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
160 | 27, 158, 159 | sylancl 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
161 | 35, 38 | ltnled 10502 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
162 | 39, 161 | mpbid 224 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) |
163 | | elfzle2 12637 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ (1...𝐴) → 𝐵 ≤ 𝐴) |
164 | 162, 163 | nsyl 138 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝐵 ∈ (1...𝐴)) |
165 | 164 | ad2antrr 719 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ (1...𝐴)) |
166 | 16, 165 | ssneldd 3829 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ 𝑓) |
167 | | hashunsng 13470 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (1...𝑁) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
168 | 100, 167 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
169 | 18, 166, 168 | mp2and 692 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1)) |
170 | 169, 156 | eqeltrrd 2906 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
171 | | suprub 11313 |
. . . . . . . . . . 11
⊢
((((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) ∧ ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) → ((♯‘𝑓) + 1) ≤ sup((♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
172 | 27, 157, 160, 170, 171 | syl31anc 1498 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
173 | 5, 6, 7 | erdszelem3 31720 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (1...𝑁) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
174 | 30, 173 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
175 | 174 | ad2antrr 719 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
176 | 172, 175 | breqtrrd 4900 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵)) |
177 | 5, 6, 7, 8 | erdszelem6 31723 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
178 | 177, 30 | ffvelrnd 6608 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾‘𝐵) ∈ ℕ) |
179 | 178 | ad2antrr 719 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈ ℕ) |
180 | 179 | nnnn0d 11677 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈
ℕ0) |
181 | | nn0ltp1le 11762 |
. . . . . . . . . 10
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ (𝐾‘𝐵) ∈ ℕ0) →
((♯‘𝑓) <
(𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
182 | 20, 180, 181 | syl2anc 581 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) < (𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
183 | 176, 182 | mpbird 249 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) < (𝐾‘𝐵)) |
184 | 21, 183 | ltned 10491 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ≠ (𝐾‘𝐵)) |
185 | 184 | ex 403 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵))) |
186 | | neeq1 3060 |
. . . . . . 7
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → ((♯‘𝑓) ≠ (𝐾‘𝐵) ↔ (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
187 | 186 | imbi2d 332 |
. . . . . 6
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → (((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵)) ↔ ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
188 | 185, 187 | syl5ibcom 237 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
189 | 14, 188 | sylan2b 589 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
190 | 189 | rexlimdva 3239 |
. . 3
⊢ (𝜑 → (∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
191 | 12, 190 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
192 | 191 | necon2bd 3014 |
1
⊢ (𝜑 → ((𝐾‘𝐴) = (𝐾‘𝐵) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝐵))) |