Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem8 Structured version   Visualization version   GIF version

Theorem erdszelem8 35192
Description: Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
erdszelem.a (𝜑𝐴 ∈ (1...𝑁))
erdszelem.b (𝜑𝐵 ∈ (1...𝑁))
erdszelem.l (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
erdszelem8 (𝜑 → ((𝐾𝐴) = (𝐾𝐵) → ¬ (𝐹𝐴)𝑂(𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝑂,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem8
Dummy variables 𝑤 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashf 14310 . . . . 5 ♯:V⟶(ℕ0 ∪ {+∞})
2 ffun 6694 . . . . 5 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
31, 2ax-mp 5 . . . 4 Fun ♯
4 erdszelem.a . . . . 5 (𝜑𝐴 ∈ (1...𝑁))
5 erdsze.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
6 erdsze.f . . . . . 6 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
7 erdszelem.k . . . . . 6 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
8 erdszelem.o . . . . . 6 𝑂 Or ℝ
95, 6, 7, 8erdszelem5 35189 . . . . 5 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
104, 9mpdan 687 . . . 4 (𝜑 → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
11 fvelima 6929 . . . 4 ((Fun ♯ ∧ (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})) → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑓) = (𝐾𝐴))
123, 10, 11sylancr 587 . . 3 (𝜑 → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑓) = (𝐾𝐴))
13 eqid 2730 . . . . . 6 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1413erdszelem1 35185 . . . . 5 (𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓))
15 fzfid 13945 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (1...𝐴) ∈ Fin)
16 simplr1 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝑓 ⊆ (1...𝐴))
17 ssfi 9143 . . . . . . . . . . 11 (((1...𝐴) ∈ Fin ∧ 𝑓 ⊆ (1...𝐴)) → 𝑓 ∈ Fin)
1815, 16, 17syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝑓 ∈ Fin)
19 hashcl 14328 . . . . . . . . . 10 (𝑓 ∈ Fin → (♯‘𝑓) ∈ ℕ0)
2018, 19syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯‘𝑓) ∈ ℕ0)
2120nn0red 12511 . . . . . . . 8 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯‘𝑓) ∈ ℝ)
22 eqid 2730 . . . . . . . . . . . . . . 15 {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)} = {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}
2322erdszelem2 35186 . . . . . . . . . . . . . 14 ((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ⊆ ℕ)
2423simpri 485 . . . . . . . . . . . . 13 (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ⊆ ℕ
25 nnssre 12197 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
2624, 25sstri 3959 . . . . . . . . . . . 12 (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ⊆ ℝ
2726a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ⊆ ℝ)
284elfzelzd 13493 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℤ)
29 erdszelem.b . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ (1...𝑁))
3029elfzelzd 13493 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℤ)
31 elfznn 13521 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ)
324, 31syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℕ)
3332nnred 12208 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℝ)
34 elfznn 13521 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (1...𝑁) → 𝐵 ∈ ℕ)
3529, 34syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℕ)
3635nnred 12208 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ ℝ)
37 erdszelem.l . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
3833, 36, 37ltled 11329 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝐵)
39 eluz2 12806 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵))
4028, 30, 38, 39syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ (ℤ𝐴))
41 fzss2 13532 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (ℤ𝐴) → (1...𝐴) ⊆ (1...𝐵))
4240, 41syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...𝐴) ⊆ (1...𝐵))
4342ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (1...𝐴) ⊆ (1...𝐵))
4416, 43sstrd 3960 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝑓 ⊆ (1...𝐵))
45 elfz1end 13522 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵))
4635, 45sylib 218 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (1...𝐵))
4746ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝐵 ∈ (1...𝐵))
4847snssd 4776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → {𝐵} ⊆ (1...𝐵))
4944, 48unssd 4158 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝐵))
50 simplr2 1217 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)))
51 f1f 6759 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ)
526, 51syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:(1...𝑁)⟶ℝ)
5352ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝐹:(1...𝑁)⟶ℝ)
54 elfzuz3 13489 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝐴))
55 fzss2 13532 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ𝐴) → (1...𝐴) ⊆ (1...𝑁))
564, 54, 553syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1...𝐴) ⊆ (1...𝑁))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (1...𝐴) ⊆ (1...𝑁))
5816, 57sstrd 3960 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝑓 ⊆ (1...𝑁))
59 fzssuz 13533 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...𝑁) ⊆ (ℤ‘1)
60 uzssz 12821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℤ‘1) ⊆ ℤ
61 zssre 12543 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℤ ⊆ ℝ
6260, 61sstri 3959 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℤ‘1) ⊆ ℝ
6359, 62sstri 3959 . . . . . . . . . . . . . . . . . . . . . . 23 (1...𝑁) ⊆ ℝ
64 ltso 11261 . . . . . . . . . . . . . . . . . . . . . . 23 < Or ℝ
65 soss 5569 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (1...𝑁)))
6663, 64, 65mp2 9 . . . . . . . . . . . . . . . . . . . . . 22 < Or (1...𝑁)
67 soisores 7305 . . . . . . . . . . . . . . . . . . . . . 22 ((( < Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁))) → ((𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ↔ ∀𝑧𝑓𝑤𝑓 (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
6866, 8, 67mpanl12 702 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁)) → ((𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ↔ ∀𝑧𝑓𝑤𝑓 (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
6953, 58, 68syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ((𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ↔ ∀𝑧𝑓𝑤𝑓 (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
7050, 69mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ∀𝑧𝑓𝑤𝑓 (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
7170r19.21bi 3230 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → ∀𝑤𝑓 (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
7216sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝑧 ∈ (1...𝐴))
73 elfzle2 13496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (1...𝐴) → 𝑧𝐴)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝑧𝐴)
7558sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝑧 ∈ (1...𝑁))
7663, 75sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝑧 ∈ ℝ)
774ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝐴 ∈ (1...𝑁))
7877, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝐴 ∈ ℕ)
7978nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝐴 ∈ ℝ)
8076, 79lenltd 11327 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝑧𝐴 ↔ ¬ 𝐴 < 𝑧))
8174, 80mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → ¬ 𝐴 < 𝑧)
8250adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)))
83 simplr3 1218 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝐴𝑓)
8483adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝐴𝑓)
85 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝑧𝑓)
86 isorel 7304 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ (𝐴𝑓𝑧𝑓)) → (𝐴 < 𝑧 ↔ ((𝐹𝑓)‘𝐴)𝑂((𝐹𝑓)‘𝑧)))
87 fvres 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴𝑓 → ((𝐹𝑓)‘𝐴) = (𝐹𝐴))
88 fvres 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝑓 → ((𝐹𝑓)‘𝑧) = (𝐹𝑧))
8987, 88breqan12d 5126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴𝑓𝑧𝑓) → (((𝐹𝑓)‘𝐴)𝑂((𝐹𝑓)‘𝑧) ↔ (𝐹𝐴)𝑂(𝐹𝑧)))
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ (𝐴𝑓𝑧𝑓)) → (((𝐹𝑓)‘𝐴)𝑂((𝐹𝑓)‘𝑧) ↔ (𝐹𝐴)𝑂(𝐹𝑧)))
9186, 90bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ (𝐴𝑓𝑧𝑓)) → (𝐴 < 𝑧 ↔ (𝐹𝐴)𝑂(𝐹𝑧)))
9282, 84, 85, 91syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝐴 < 𝑧 ↔ (𝐹𝐴)𝑂(𝐹𝑧)))
9381, 92mtbid 324 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → ¬ (𝐹𝐴)𝑂(𝐹𝑧))
94 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝐹𝐴)𝑂(𝐹𝐵))
9553adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝐹:(1...𝑁)⟶ℝ)
9695, 75ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝐹𝑧) ∈ ℝ)
9795, 77ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝐹𝐴) ∈ ℝ)
9829ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝐵 ∈ (1...𝑁))
9998adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → 𝐵 ∈ (1...𝑁))
10095, 99ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝐹𝐵) ∈ ℝ)
101 sotr2 5583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑂 Or ℝ ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ)) → ((¬ (𝐹𝐴)𝑂(𝐹𝑧) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐹𝑧)𝑂(𝐹𝐵)))
1028, 101mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑧) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → ((¬ (𝐹𝐴)𝑂(𝐹𝑧) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐹𝑧)𝑂(𝐹𝐵)))
10396, 97, 100, 102syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → ((¬ (𝐹𝐴)𝑂(𝐹𝑧) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐹𝑧)𝑂(𝐹𝐵)))
10493, 94, 103mp2and 699 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝐹𝑧)𝑂(𝐹𝐵))
105104a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝐵)))
106 elsni 4609 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝐵} → 𝑤 = 𝐵)
107106fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ {𝐵} → (𝐹𝑤) = (𝐹𝐵))
108107breq2d 5122 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ {𝐵} → ((𝐹𝑧)𝑂(𝐹𝑤) ↔ (𝐹𝑧)𝑂(𝐹𝐵)))
109108imbi2d 340 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)) ↔ (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝐵))))
110105, 109syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → (𝑤 ∈ {𝐵} → (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
111110ralrimiv 3125 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
112 ralunb 4163 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)) ↔ (∀𝑤𝑓 (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)) ∧ ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
11371, 111, 112sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑧𝑓) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
114113ralrimiva 3126 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ∀𝑧𝑓𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
11549sselda 3949 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → 𝑤 ∈ (1...𝐵))
116 elfzle2 13496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ (1...𝐵) → 𝑤𝐵)
117116adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤𝐵)
118 elfzelz 13492 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℤ)
119118zred 12645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℝ)
120119adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ∈ ℝ)
12136ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝐵 ∈ ℝ)
122120, 121lenltd 11327 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → (𝑤𝐵 ↔ ¬ 𝐵 < 𝑤))
123117, 122mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → ¬ 𝐵 < 𝑤)
124115, 123syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → ¬ 𝐵 < 𝑤)
125124pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → (𝐵 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
126125ralrimiva 3126 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
127 elsni 4609 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
128127breq1d 5120 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝐵} → (𝑧 < 𝑤𝐵 < 𝑤))
129128imbi1d 341 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)) ↔ (𝐵 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
130129ralbidv 3157 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} → (∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)) ↔ ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
131126, 130syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝑧 ∈ {𝐵} → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
132131ralrimiv 3125 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
133 ralunb 4163 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)) ↔ (∀𝑧𝑓𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)) ∧ ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
134114, 132, 133sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤)))
13598snssd 4776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → {𝐵} ⊆ (1...𝑁))
13658, 135unssd 4158 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝑁))
137 soisores 7305 . . . . . . . . . . . . . . . . 17 ((( < Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁))) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
13866, 8, 137mpanl12 702 . . . . . . . . . . . . . . . 16 ((𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
13953, 136, 138syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹𝑧)𝑂(𝐹𝑤))))
140134, 139mpbird 257 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))))
141 ssun2 4145 . . . . . . . . . . . . . . 15 {𝐵} ⊆ (𝑓 ∪ {𝐵})
142 snssg 4750 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...𝐵) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵})))
14347, 142syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵})))
144141, 143mpbiri 258 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → 𝐵 ∈ (𝑓 ∪ {𝐵}))
14522erdszelem1 35185 . . . . . . . . . . . . . 14 ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)} ↔ ((𝑓 ∪ {𝐵}) ⊆ (1...𝐵) ∧ (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ∧ 𝐵 ∈ (𝑓 ∪ {𝐵})))
14649, 140, 144, 145syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)})
147 vex 3454 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
148 snex 5394 . . . . . . . . . . . . . . . 16 {𝐵} ∈ V
149147, 148unex 7723 . . . . . . . . . . . . . . 15 (𝑓 ∪ {𝐵}) ∈ V
1501fdmi 6702 . . . . . . . . . . . . . . 15 dom ♯ = V
151149, 150eleqtrri 2828 . . . . . . . . . . . . . 14 (𝑓 ∪ {𝐵}) ∈ dom ♯
152 funfvima 7207 . . . . . . . . . . . . . 14 ((Fun ♯ ∧ (𝑓 ∪ {𝐵}) ∈ dom ♯) → ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)})))
1533, 151, 152mp2an 692 . . . . . . . . . . . . 13 ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}))
154146, 153syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}))
155154ne0d 4308 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ≠ ∅)
15623simpli 483 . . . . . . . . . . . 12 (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ∈ Fin
157 fimaxre2 12135 . . . . . . . . . . . 12 (((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ⊆ ℝ ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)})𝑤𝑧)
15827, 156, 157sylancl 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)})𝑤𝑧)
15933, 36ltnled 11328 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
16037, 159mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐵𝐴)
161 elfzle2 13496 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...𝐴) → 𝐵𝐴)
162160, 161nsyl 140 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐵 ∈ (1...𝐴))
163162ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ¬ 𝐵 ∈ (1...𝐴))
16416, 163ssneldd 3952 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ¬ 𝐵𝑓)
165 hashunsng 14364 . . . . . . . . . . . . . 14 (𝐵 ∈ (1...𝑁) → ((𝑓 ∈ Fin ∧ ¬ 𝐵𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1)))
16698, 165syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ((𝑓 ∈ Fin ∧ ¬ 𝐵𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1)))
16718, 164, 166mp2and 699 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))
168167, 154eqeltrrd 2830 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}))
169 suprub 12151 . . . . . . . . . . 11 ((((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ⊆ ℝ ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)})𝑤𝑧) ∧ ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)})) → ((♯‘𝑓) + 1) ≤ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}), ℝ, < ))
17027, 155, 158, 168, 169syl31anc 1375 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ((♯‘𝑓) + 1) ≤ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}), ℝ, < ))
1715, 6, 7erdszelem3 35187 . . . . . . . . . . . 12 (𝐵 ∈ (1...𝑁) → (𝐾𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}), ℝ, < ))
17229, 171syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}), ℝ, < ))
173172ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐾𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐵𝑦)}), ℝ, < ))
174170, 173breqtrrd 5138 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ((♯‘𝑓) + 1) ≤ (𝐾𝐵))
1755, 6, 7, 8erdszelem6 35190 . . . . . . . . . . . . 13 (𝜑𝐾:(1...𝑁)⟶ℕ)
176175, 29ffvelcdmd 7060 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐵) ∈ ℕ)
177176ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐾𝐵) ∈ ℕ)
178177nnnn0d 12510 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (𝐾𝐵) ∈ ℕ0)
179 nn0ltp1le 12599 . . . . . . . . . 10 (((♯‘𝑓) ∈ ℕ0 ∧ (𝐾𝐵) ∈ ℕ0) → ((♯‘𝑓) < (𝐾𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾𝐵)))
18020, 178, 179syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → ((♯‘𝑓) < (𝐾𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾𝐵)))
181174, 180mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯‘𝑓) < (𝐾𝐵))
18221, 181ltned 11317 . . . . . . 7 (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) ∧ (𝐹𝐴)𝑂(𝐹𝐵)) → (♯‘𝑓) ≠ (𝐾𝐵))
183182ex 412 . . . . . 6 ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) → ((𝐹𝐴)𝑂(𝐹𝐵) → (♯‘𝑓) ≠ (𝐾𝐵)))
184 neeq1 2988 . . . . . . 7 ((♯‘𝑓) = (𝐾𝐴) → ((♯‘𝑓) ≠ (𝐾𝐵) ↔ (𝐾𝐴) ≠ (𝐾𝐵)))
185184imbi2d 340 . . . . . 6 ((♯‘𝑓) = (𝐾𝐴) → (((𝐹𝐴)𝑂(𝐹𝐵) → (♯‘𝑓) ≠ (𝐾𝐵)) ↔ ((𝐹𝐴)𝑂(𝐹𝐵) → (𝐾𝐴) ≠ (𝐾𝐵))))
186183, 185syl5ibcom 245 . . . . 5 ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹𝑓) Isom < , 𝑂 (𝑓, (𝐹𝑓)) ∧ 𝐴𝑓)) → ((♯‘𝑓) = (𝐾𝐴) → ((𝐹𝐴)𝑂(𝐹𝐵) → (𝐾𝐴) ≠ (𝐾𝐵))))
18714, 186sylan2b 594 . . . 4 ((𝜑𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) → ((♯‘𝑓) = (𝐾𝐴) → ((𝐹𝐴)𝑂(𝐹𝐵) → (𝐾𝐴) ≠ (𝐾𝐵))))
188187rexlimdva 3135 . . 3 (𝜑 → (∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑓) = (𝐾𝐴) → ((𝐹𝐴)𝑂(𝐹𝐵) → (𝐾𝐴) ≠ (𝐾𝐵))))
18912, 188mpd 15 . 2 (𝜑 → ((𝐹𝐴)𝑂(𝐹𝐵) → (𝐾𝐴) ≠ (𝐾𝐵)))
190189necon2bd 2942 1 (𝜑 → ((𝐾𝐴) = (𝐾𝐵) → ¬ (𝐹𝐴)𝑂(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cmpt 5191   Or wor 5548  dom cdm 5641  cres 5643  cima 5644  Fun wfun 6508  wf 6510  1-1wf1 6511  cfv 6514   Isom wiso 6515  (class class class)co 7390  Fincfn 8921  supcsup 9398  cr 11074  1c1 11076   + caddc 11078  +∞cpnf 11212   < clt 11215  cle 11216  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  erdszelem9  35193
  Copyright terms: Public domain W3C validator