HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chm0i Structured version   Visualization version   GIF version

Theorem chm0i 31509
Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chm0i (𝐴 ∩ 0) = 0

Proof of Theorem chm0i
StepHypRef Expression
1 inss2 4238 . 2 (𝐴 ∩ 0) ⊆ 0
2 ch0le.1 . . . 4 𝐴C
32ch0lei 31470 . . 3 0𝐴
4 ssid 4006 . . 3 0 ⊆ 0
53, 4ssini 4240 . 2 0 ⊆ (𝐴 ∩ 0)
61, 5eqssi 4000 1 (𝐴 ∩ 0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  cin 3950   C cch 30948  0c0h 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-hilex 31018
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fv 6569  df-ov 7434  df-sh 31226  df-ch 31240  df-ch0 31272
This theorem is referenced by:  chm0  31510
  Copyright terms: Public domain W3C validator