| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chm0i | Structured version Visualization version GIF version | ||
| Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chm0i | ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4204 | . 2 ⊢ (𝐴 ∩ 0ℋ) ⊆ 0ℋ | |
| 2 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 3 | 2 | ch0lei 31387 | . . 3 ⊢ 0ℋ ⊆ 𝐴 |
| 4 | ssid 3972 | . . 3 ⊢ 0ℋ ⊆ 0ℋ | |
| 5 | 3, 4 | ssini 4206 | . 2 ⊢ 0ℋ ⊆ (𝐴 ∩ 0ℋ) |
| 6 | 1, 5 | eqssi 3966 | 1 ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∩ cin 3916 Cℋ cch 30865 0ℋc0h 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 df-ov 7393 df-sh 31143 df-ch 31157 df-ch0 31189 |
| This theorem is referenced by: chm0 31427 |
| Copyright terms: Public domain | W3C validator |