HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chm0i Structured version   Visualization version   GIF version

Theorem chm0i 29880
Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chm0i (𝐴 ∩ 0) = 0

Proof of Theorem chm0i
StepHypRef Expression
1 inss2 4166 . 2 (𝐴 ∩ 0) ⊆ 0
2 ch0le.1 . . . 4 𝐴C
32ch0lei 29841 . . 3 0𝐴
4 ssid 3945 . . 3 0 ⊆ 0
53, 4ssini 4168 . 2 0 ⊆ (𝐴 ∩ 0)
61, 5eqssi 3939 1 (𝐴 ∩ 0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2101  cin 3888   C cch 29319  0c0h 29325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704  ax-sep 5226  ax-hilex 29389
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-xp 5597  df-cnv 5599  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fv 6455  df-ov 7298  df-sh 29597  df-ch 29611  df-ch0 29643
This theorem is referenced by:  chm0  29881
  Copyright terms: Public domain W3C validator