HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chm0i Structured version   Visualization version   GIF version

Theorem chm0i 31472
Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1 𝐴C
Assertion
Ref Expression
chm0i (𝐴 ∩ 0) = 0

Proof of Theorem chm0i
StepHypRef Expression
1 inss2 4187 . 2 (𝐴 ∩ 0) ⊆ 0
2 ch0le.1 . . . 4 𝐴C
32ch0lei 31433 . . 3 0𝐴
4 ssid 3953 . . 3 0 ⊆ 0
53, 4ssini 4189 . 2 0 ⊆ (𝐴 ∩ 0)
61, 5eqssi 3947 1 (𝐴 ∩ 0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  cin 3897   C cch 30911  0c0h 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-hilex 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fv 6494  df-ov 7355  df-sh 31189  df-ch 31203  df-ch0 31235
This theorem is referenced by:  chm0  31473
  Copyright terms: Public domain W3C validator