Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chm0i | Structured version Visualization version GIF version |
Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chm0i | ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4160 | . 2 ⊢ (𝐴 ∩ 0ℋ) ⊆ 0ℋ | |
2 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
3 | 2 | ch0lei 29714 | . . 3 ⊢ 0ℋ ⊆ 𝐴 |
4 | ssid 3939 | . . 3 ⊢ 0ℋ ⊆ 0ℋ | |
5 | 3, 4 | ssini 4162 | . 2 ⊢ 0ℋ ⊆ (𝐴 ∩ 0ℋ) |
6 | 1, 5 | eqssi 3933 | 1 ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∩ cin 3882 Cℋ cch 29192 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ov 7258 df-sh 29470 df-ch 29484 df-ch0 29516 |
This theorem is referenced by: chm0 29754 |
Copyright terms: Public domain | W3C validator |