Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chm0i | Structured version Visualization version GIF version |
Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chm0i | ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4166 | . 2 ⊢ (𝐴 ∩ 0ℋ) ⊆ 0ℋ | |
2 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
3 | 2 | ch0lei 29841 | . . 3 ⊢ 0ℋ ⊆ 𝐴 |
4 | ssid 3945 | . . 3 ⊢ 0ℋ ⊆ 0ℋ | |
5 | 3, 4 | ssini 4168 | . 2 ⊢ 0ℋ ⊆ (𝐴 ∩ 0ℋ) |
6 | 1, 5 | eqssi 3939 | 1 ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 ∩ cin 3888 Cℋ cch 29319 0ℋc0h 29325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-sep 5226 ax-hilex 29389 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-xp 5597 df-cnv 5599 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fv 6455 df-ov 7298 df-sh 29597 df-ch 29611 df-ch0 29643 |
This theorem is referenced by: chm0 29881 |
Copyright terms: Public domain | W3C validator |