| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chm0i | Structured version Visualization version GIF version | ||
| Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chm0i | ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4213 | . 2 ⊢ (𝐴 ∩ 0ℋ) ⊆ 0ℋ | |
| 2 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 3 | 2 | ch0lei 31432 | . . 3 ⊢ 0ℋ ⊆ 𝐴 |
| 4 | ssid 3981 | . . 3 ⊢ 0ℋ ⊆ 0ℋ | |
| 5 | 3, 4 | ssini 4215 | . 2 ⊢ 0ℋ ⊆ (𝐴 ∩ 0ℋ) |
| 6 | 1, 5 | eqssi 3975 | 1 ⊢ (𝐴 ∩ 0ℋ) = 0ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∩ cin 3925 Cℋ cch 30910 0ℋc0h 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fv 6539 df-ov 7408 df-sh 31188 df-ch 31202 df-ch0 31234 |
| This theorem is referenced by: chm0 31472 |
| Copyright terms: Public domain | W3C validator |