| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icomnfinre | Structured version Visualization version GIF version | ||
| Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| icomnfinre.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| icomnfinre | ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11238 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*) |
| 3 | icomnfinre.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*) |
| 5 | elinel2 4168 | . . . . 5 ⊢ (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ) |
| 7 | 6 | mnfltd 13091 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥) |
| 8 | elinel1 4167 | . . . . . 6 ⊢ (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴)) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴)) |
| 10 | 2, 4, 9 | icoltubd 45550 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴) |
| 11 | 2, 4, 6, 7, 10 | eliood 45503 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴)) |
| 12 | 11 | ssd 45081 | . 2 ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴)) |
| 13 | ioossico 13406 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ (-∞[,)𝐴) | |
| 14 | ioossre 13375 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ ℝ | |
| 15 | 13, 14 | ssini 4206 | . . 3 ⊢ (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ) |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)) |
| 17 | 12, 16 | eqssd 3967 | 1 ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 (class class class)co 7390 ℝcr 11074 -∞cmnf 11213 ℝ*cxr 11214 (,)cioo 13313 [,)cico 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 df-ico 13319 |
| This theorem is referenced by: preimaioomnf 46724 |
| Copyright terms: Public domain | W3C validator |