Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icomnfinre Structured version   Visualization version   GIF version

Theorem icomnfinre 43797
Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
icomnfinre.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
icomnfinre (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))

Proof of Theorem icomnfinre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 11213 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*)
3 icomnfinre.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
43adantr 482 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*)
5 elinel2 4157 . . . . 5 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ)
65adantl 483 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ)
76mnfltd 13046 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥)
8 elinel1 4156 . . . . . 6 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴))
98adantl 483 . . . . 5 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴))
102, 4, 9icoltubd 43790 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴)
112, 4, 6, 7, 10eliood 43743 . . 3 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴))
1211ssd 43297 . 2 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴))
13 ioossico 13356 . . . 4 (-∞(,)𝐴) ⊆ (-∞[,)𝐴)
14 ioossre 13326 . . . 4 (-∞(,)𝐴) ⊆ ℝ
1513, 14ssini 4192 . . 3 (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)
1615a1i 11 . 2 (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ))
1712, 16eqssd 3962 1 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cin 3910  wss 3911  (class class class)co 7358  cr 11051  -∞cmnf 11188  *cxr 11189  (,)cioo 13265  [,)cico 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-pre-lttri 11126  ax-pre-lttrn 11127
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-ioo 13269  df-ico 13271
This theorem is referenced by:  preimaioomnf  44967
  Copyright terms: Public domain W3C validator