Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icomnfinre Structured version   Visualization version   GIF version

Theorem icomnfinre 45470
Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
icomnfinre.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
icomnfinre (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))

Proof of Theorem icomnfinre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 11347 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*)
3 icomnfinre.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*)
5 elinel2 4225 . . . . 5 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ)
65adantl 481 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ)
76mnfltd 13187 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥)
8 elinel1 4224 . . . . . 6 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴))
98adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴))
102, 4, 9icoltubd 45463 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴)
112, 4, 6, 7, 10eliood 45416 . . 3 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴))
1211ssd 44982 . 2 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴))
13 ioossico 13498 . . . 4 (-∞(,)𝐴) ⊆ (-∞[,)𝐴)
14 ioossre 13468 . . . 4 (-∞(,)𝐴) ⊆ ℝ
1513, 14ssini 4261 . . 3 (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)
1615a1i 11 . 2 (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ))
1712, 16eqssd 4026 1 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  (class class class)co 7448  cr 11183  -∞cmnf 11322  *cxr 11323  (,)cioo 13407  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ioo 13411  df-ico 13413
This theorem is referenced by:  preimaioomnf  46640
  Copyright terms: Public domain W3C validator