Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icomnfinre Structured version   Visualization version   GIF version

Theorem icomnfinre 45505
Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
icomnfinre.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
icomnfinre (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))

Proof of Theorem icomnfinre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 11316 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*)
3 icomnfinre.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*)
5 elinel2 4212 . . . . 5 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ)
65adantl 481 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ)
76mnfltd 13164 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥)
8 elinel1 4211 . . . . . 6 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴))
98adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴))
102, 4, 9icoltubd 45498 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴)
112, 4, 6, 7, 10eliood 45451 . . 3 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴))
1211ssd 45020 . 2 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴))
13 ioossico 13475 . . . 4 (-∞(,)𝐴) ⊆ (-∞[,)𝐴)
14 ioossre 13445 . . . 4 (-∞(,)𝐴) ⊆ ℝ
1513, 14ssini 4248 . . 3 (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)
1615a1i 11 . 2 (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ))
1712, 16eqssd 4013 1 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cin 3962  wss 3963  (class class class)co 7431  cr 11152  -∞cmnf 11291  *cxr 11292  (,)cioo 13384  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioo 13388  df-ico 13390
This theorem is referenced by:  preimaioomnf  46675
  Copyright terms: Public domain W3C validator