![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icomnfinre | Structured version Visualization version GIF version |
Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
icomnfinre.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
icomnfinre | ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11347 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*) |
3 | icomnfinre.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*) |
5 | elinel2 4225 | . . . . 5 ⊢ (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ) | |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ) |
7 | 6 | mnfltd 13187 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥) |
8 | elinel1 4224 | . . . . . 6 ⊢ (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴)) | |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴)) |
10 | 2, 4, 9 | icoltubd 45463 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴) |
11 | 2, 4, 6, 7, 10 | eliood 45416 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴)) |
12 | 11 | ssd 44982 | . 2 ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴)) |
13 | ioossico 13498 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ (-∞[,)𝐴) | |
14 | ioossre 13468 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ ℝ | |
15 | 13, 14 | ssini 4261 | . . 3 ⊢ (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ) |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)) |
17 | 12, 16 | eqssd 4026 | 1 ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 (class class class)co 7448 ℝcr 11183 -∞cmnf 11322 ℝ*cxr 11323 (,)cioo 13407 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 df-ico 13413 |
This theorem is referenced by: preimaioomnf 46640 |
Copyright terms: Public domain | W3C validator |