| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icomnfinre | Structured version Visualization version GIF version | ||
| Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| icomnfinre.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| icomnfinre | ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11166 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*) |
| 3 | icomnfinre.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*) |
| 5 | elinel2 4152 | . . . . 5 ⊢ (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ) |
| 7 | 6 | mnfltd 13020 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥) |
| 8 | elinel1 4151 | . . . . . 6 ⊢ (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴)) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴)) |
| 10 | 2, 4, 9 | icoltubd 45584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴) |
| 11 | 2, 4, 6, 7, 10 | eliood 45537 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴)) |
| 12 | 11 | ssd 45116 | . 2 ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴)) |
| 13 | ioossico 13335 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ (-∞[,)𝐴) | |
| 14 | ioossre 13304 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ ℝ | |
| 15 | 13, 14 | ssini 4190 | . . 3 ⊢ (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ) |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)) |
| 17 | 12, 16 | eqssd 3952 | 1 ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 (class class class)co 7346 ℝcr 11002 -∞cmnf 11141 ℝ*cxr 11142 (,)cioo 13242 [,)cico 13244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-ioo 13246 df-ico 13248 |
| This theorem is referenced by: preimaioomnf 46756 |
| Copyright terms: Public domain | W3C validator |