Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icomnfinre Structured version   Visualization version   GIF version

Theorem icomnfinre 42717
Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
icomnfinre.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
icomnfinre (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))

Proof of Theorem icomnfinre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10873 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*)
3 icomnfinre.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
43adantr 484 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*)
5 elinel2 4100 . . . . 5 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ)
65adantl 485 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ)
76mnfltd 12699 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥)
8 elinel1 4099 . . . . . 6 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴))
98adantl 485 . . . . 5 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴))
102, 4, 9icoltubd 42710 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴)
112, 4, 6, 7, 10eliood 42663 . . 3 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴))
1211ssd 42255 . 2 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴))
13 ioossico 13009 . . . 4 (-∞(,)𝐴) ⊆ (-∞[,)𝐴)
14 ioossre 12979 . . . 4 (-∞(,)𝐴) ⊆ ℝ
1513, 14ssini 4136 . . 3 (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)
1615a1i 11 . 2 (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ))
1712, 16eqssd 3908 1 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cin 3856  wss 3857  (class class class)co 7202  cr 10711  -∞cmnf 10848  *cxr 10849  (,)cioo 12918  [,)cico 12920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-pre-lttri 10786  ax-pre-lttrn 10787
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-po 5457  df-so 5458  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-ioo 12922  df-ico 12924
This theorem is referenced by:  preimaioomnf  43882
  Copyright terms: Public domain W3C validator