Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icomnfinre Structured version   Visualization version   GIF version

Theorem icomnfinre 41265
Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
icomnfinre.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
icomnfinre (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))

Proof of Theorem icomnfinre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10498 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ ∈ ℝ*)
3 icomnfinre.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
43adantr 473 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝐴 ∈ ℝ*)
5 elinel2 4061 . . . . 5 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ ℝ)
65adantl 474 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ ℝ)
76mnfltd 12336 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → -∞ < 𝑥)
8 elinel1 4060 . . . . . 6 (𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ) → 𝑥 ∈ (-∞[,)𝐴))
98adantl 474 . . . . 5 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞[,)𝐴))
102, 4, 9icoltubd 41258 . . . 4 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 < 𝐴)
112, 4, 6, 7, 10eliood 41210 . . 3 ((𝜑𝑥 ∈ ((-∞[,)𝐴) ∩ ℝ)) → 𝑥 ∈ (-∞(,)𝐴))
1211ssd 40769 . 2 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) ⊆ (-∞(,)𝐴))
13 ioossico 12642 . . . 4 (-∞(,)𝐴) ⊆ (-∞[,)𝐴)
14 ioossre 12614 . . . 4 (-∞(,)𝐴) ⊆ ℝ
1513, 14ssini 4095 . . 3 (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ)
1615a1i 11 . 2 (𝜑 → (-∞(,)𝐴) ⊆ ((-∞[,)𝐴) ∩ ℝ))
1712, 16eqssd 3875 1 (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  cin 3828  wss 3829  (class class class)co 6976  cr 10334  -∞cmnf 10472  *cxr 10473  (,)cioo 12554  [,)cico 12556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-pre-lttri 10409  ax-pre-lttrn 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-ioo 12558  df-ico 12560
This theorem is referenced by:  preimaioomnf  42434
  Copyright terms: Public domain W3C validator