HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimcaui Structured version   Visualization version   GIF version

Theorem hlimcaui 31163
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimcaui (𝐹𝑣 𝐴𝐹 ∈ Cauchy)

Proof of Theorem hlimcaui
StepHypRef Expression
1 eqid 2735 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2735 . . . . . . . 8 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2735 . . . . . . . 8 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
41, 2, 3hhlm 31126 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
5 resss 5988 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
64, 5eqsstri 4005 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
7 dmss 5882 . . . . . 6 ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
86, 7ax-mp 5 . . . . 5 dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
91, 2hhxmet 31102 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
103lmcau 25263 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
119, 10ax-mp 5 . . . . 5 dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
128, 11sstri 3968 . . . 4 dom ⇝𝑣 ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
134dmeqi 5884 . . . . . 6 dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
14 dmres 5999 . . . . . 6 dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)) = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
1513, 14eqtri 2758 . . . . 5 dom ⇝𝑣 = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
16 inss1 4212 . . . . 5 (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))) ⊆ ( ℋ ↑m ℕ)
1715, 16eqsstri 4005 . . . 4 dom ⇝𝑣 ⊆ ( ℋ ↑m ℕ)
1812, 17ssini 4215 . . 3 dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑m ℕ))
191, 2hhcau 31125 . . 3 Cauchy = ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑m ℕ))
2018, 19sseqtrri 4008 . 2 dom ⇝𝑣 ⊆ Cauchy
21 relres 5992 . . . 4 Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
224releqi 5756 . . . 4 (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
2321, 22mpbir 231 . . 3 Rel ⇝𝑣
2423releldmi 5928 . 2 (𝐹𝑣 𝐴𝐹 ∈ dom ⇝𝑣 )
2520, 24sselid 3956 1 (𝐹𝑣 𝐴𝐹 ∈ Cauchy)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cin 3925  wss 3926  cop 4607   class class class wbr 5119  dom cdm 5654  cres 5656  Rel wrel 5659  cfv 6530  (class class class)co 7403  m cmap 8838  cn 12238  ∞Metcxmet 21298  MetOpencmopn 21303  𝑡clm 23162  Cauccau 25203  IndMetcims 30518  chba 30846   + cva 30847   · csm 30848  normcno 30850  Cauchyccauold 30853  𝑣 chli 30854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-icc 13367  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-lm 23165  df-haus 23251  df-cau 25206  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-hnorm 30895  df-hvsub 30898  df-hlim 30899  df-hcau 30900
This theorem is referenced by:  isch3  31168  chscllem2  31565
  Copyright terms: Public domain W3C validator