HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimcaui Structured version   Visualization version   GIF version

Theorem hlimcaui 29647
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimcaui (𝐹𝑣 𝐴𝐹 ∈ Cauchy)

Proof of Theorem hlimcaui
StepHypRef Expression
1 eqid 2736 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2736 . . . . . . . 8 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2736 . . . . . . . 8 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
41, 2, 3hhlm 29610 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
5 resss 5928 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
64, 5eqsstri 3960 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
7 dmss 5824 . . . . . 6 ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
86, 7ax-mp 5 . . . . 5 dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
91, 2hhxmet 29586 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
103lmcau 24526 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
119, 10ax-mp 5 . . . . 5 dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
128, 11sstri 3935 . . . 4 dom ⇝𝑣 ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
134dmeqi 5826 . . . . . 6 dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
14 dmres 5925 . . . . . 6 dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)) = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
1513, 14eqtri 2764 . . . . 5 dom ⇝𝑣 = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
16 inss1 4168 . . . . 5 (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))) ⊆ ( ℋ ↑m ℕ)
1715, 16eqsstri 3960 . . . 4 dom ⇝𝑣 ⊆ ( ℋ ↑m ℕ)
1812, 17ssini 4171 . . 3 dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑m ℕ))
191, 2hhcau 29609 . . 3 Cauchy = ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑m ℕ))
2018, 19sseqtrri 3963 . 2 dom ⇝𝑣 ⊆ Cauchy
21 relres 5932 . . . 4 Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
224releqi 5699 . . . 4 (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
2321, 22mpbir 230 . . 3 Rel ⇝𝑣
2423releldmi 5869 . 2 (𝐹𝑣 𝐴𝐹 ∈ dom ⇝𝑣 )
2520, 24sselid 3924 1 (𝐹𝑣 𝐴𝐹 ∈ Cauchy)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  cin 3891  wss 3892  cop 4571   class class class wbr 5081  dom cdm 5600  cres 5602  Rel wrel 5605  cfv 6458  (class class class)co 7307  m cmap 8646  cn 12023  ∞Metcxmet 20631  MetOpencmopn 20636  𝑡clm 22426  Cauccau 24466  IndMetcims 29002  chba 29330   + cva 29331   · csm 29332  normcno 29334  Cauchyccauold 29337  𝑣 chli 29338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999  ax-addf 11000  ax-mulf 11001  ax-hilex 29410  ax-hfvadd 29411  ax-hvcom 29412  ax-hvass 29413  ax-hv0cl 29414  ax-hvaddid 29415  ax-hfvmul 29416  ax-hvmulid 29417  ax-hvmulass 29418  ax-hvdistr1 29419  ax-hvdistr2 29420  ax-hvmul0 29421  ax-hfi 29490  ax-his1 29493  ax-his2 29494  ax-his3 29495  ax-his4 29496
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9249  df-inf 9250  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-n0 12284  df-z 12370  df-uz 12633  df-q 12739  df-rp 12781  df-xneg 12898  df-xadd 12899  df-xmul 12900  df-icc 13136  df-seq 13772  df-exp 13833  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-topgen 17203  df-psmet 20638  df-xmet 20639  df-met 20640  df-bl 20641  df-mopn 20642  df-top 22092  df-topon 22109  df-bases 22145  df-lm 22429  df-haus 22515  df-cau 24469  df-grpo 28904  df-gid 28905  df-ginv 28906  df-gdiv 28907  df-ablo 28956  df-vc 28970  df-nv 29003  df-va 29006  df-ba 29007  df-sm 29008  df-0v 29009  df-vs 29010  df-nmcv 29011  df-ims 29012  df-hnorm 29379  df-hvsub 29382  df-hlim 29383  df-hcau 29384
This theorem is referenced by:  isch3  29652  chscllem2  30049
  Copyright terms: Public domain W3C validator