| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlimcaui | Structured version Visualization version GIF version | ||
| Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlimcaui | ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . . 8 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | eqid 2729 | . . . . . . . 8 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) | |
| 4 | 1, 2, 3 | hhlm 31161 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
| 5 | resss 5956 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) | |
| 6 | 4, 5 | eqsstri 3984 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
| 7 | dmss 5849 | . . . . . 6 ⊢ ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
| 9 | 1, 2 | hhxmet 31137 | . . . . . 6 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) |
| 10 | 3 | lmcau 25229 | . . . . . 6 ⊢ ((IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 12 | 8, 11 | sstri 3947 | . . . 4 ⊢ dom ⇝𝑣 ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 13 | 4 | dmeqi 5851 | . . . . . 6 ⊢ dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
| 14 | dmres 5967 | . . . . . 6 ⊢ dom ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) | |
| 15 | 13, 14 | eqtri 2752 | . . . . 5 ⊢ dom ⇝𝑣 = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) |
| 16 | inss1 4190 | . . . . 5 ⊢ (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) ⊆ ( ℋ ↑m ℕ) | |
| 17 | 15, 16 | eqsstri 3984 | . . . 4 ⊢ dom ⇝𝑣 ⊆ ( ℋ ↑m ℕ) |
| 18 | 12, 17 | ssini 4193 | . . 3 ⊢ dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∩ ( ℋ ↑m ℕ)) |
| 19 | 1, 2 | hhcau 31160 | . . 3 ⊢ Cauchy = ((Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∩ ( ℋ ↑m ℕ)) |
| 20 | 18, 19 | sseqtrri 3987 | . 2 ⊢ dom ⇝𝑣 ⊆ Cauchy |
| 21 | relres 5960 | . . . 4 ⊢ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) | |
| 22 | 4 | releqi 5725 | . . . 4 ⊢ (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))) |
| 23 | 21, 22 | mpbir 231 | . . 3 ⊢ Rel ⇝𝑣 |
| 24 | 23 | releldmi 5894 | . 2 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ dom ⇝𝑣 ) |
| 25 | 20, 24 | sselid 3935 | 1 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 dom cdm 5623 ↾ cres 5625 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ℕcn 12146 ∞Metcxmet 21264 MetOpencmopn 21269 ⇝𝑡clm 23129 Cauccau 25169 IndMetcims 30553 ℋchba 30881 +ℎ cva 30882 ·ℎ csm 30883 normℎcno 30885 Cauchyccauold 30888 ⇝𝑣 chli 30889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvmulass 30969 ax-hvdistr1 30970 ax-hvdistr2 30971 ax-hvmul0 30972 ax-hfi 31041 ax-his1 31044 ax-his2 31045 ax-his3 31046 ax-his4 31047 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-bases 22849 df-lm 23132 df-haus 23218 df-cau 25172 df-grpo 30455 df-gid 30456 df-ginv 30457 df-gdiv 30458 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-vs 30561 df-nmcv 30562 df-ims 30563 df-hnorm 30930 df-hvsub 30933 df-hlim 30934 df-hcau 30935 |
| This theorem is referenced by: isch3 31203 chscllem2 31600 |
| Copyright terms: Public domain | W3C validator |