| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlimcaui | Structured version Visualization version GIF version | ||
| Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlimcaui | ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . . . 8 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | eqid 2730 | . . . . . . . 8 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 3 | eqid 2730 | . . . . . . . 8 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) | |
| 4 | 1, 2, 3 | hhlm 31135 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
| 5 | resss 5975 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) | |
| 6 | 4, 5 | eqsstri 3996 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
| 7 | dmss 5869 | . . . . . 6 ⊢ ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
| 9 | 1, 2 | hhxmet 31111 | . . . . . 6 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) |
| 10 | 3 | lmcau 25220 | . . . . . 6 ⊢ ((IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 12 | 8, 11 | sstri 3959 | . . . 4 ⊢ dom ⇝𝑣 ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 13 | 4 | dmeqi 5871 | . . . . . 6 ⊢ dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
| 14 | dmres 5986 | . . . . . 6 ⊢ dom ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) | |
| 15 | 13, 14 | eqtri 2753 | . . . . 5 ⊢ dom ⇝𝑣 = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) |
| 16 | inss1 4203 | . . . . 5 ⊢ (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) ⊆ ( ℋ ↑m ℕ) | |
| 17 | 15, 16 | eqsstri 3996 | . . . 4 ⊢ dom ⇝𝑣 ⊆ ( ℋ ↑m ℕ) |
| 18 | 12, 17 | ssini 4206 | . . 3 ⊢ dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∩ ( ℋ ↑m ℕ)) |
| 19 | 1, 2 | hhcau 31134 | . . 3 ⊢ Cauchy = ((Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∩ ( ℋ ↑m ℕ)) |
| 20 | 18, 19 | sseqtrri 3999 | . 2 ⊢ dom ⇝𝑣 ⊆ Cauchy |
| 21 | relres 5979 | . . . 4 ⊢ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) | |
| 22 | 4 | releqi 5743 | . . . 4 ⊢ (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))) |
| 23 | 21, 22 | mpbir 231 | . . 3 ⊢ Rel ⇝𝑣 |
| 24 | 23 | releldmi 5915 | . 2 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ dom ⇝𝑣 ) |
| 25 | 20, 24 | sselid 3947 | 1 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 〈cop 4598 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℕcn 12193 ∞Metcxmet 21256 MetOpencmopn 21261 ⇝𝑡clm 23120 Cauccau 25160 IndMetcims 30527 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 normℎcno 30859 Cauchyccauold 30862 ⇝𝑣 chli 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-lm 23123 df-haus 23209 df-cau 25163 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 df-hnorm 30904 df-hvsub 30907 df-hlim 30908 df-hcau 30909 |
| This theorem is referenced by: isch3 31177 chscllem2 31574 |
| Copyright terms: Public domain | W3C validator |