HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimcaui Structured version   Visualization version   GIF version

Theorem hlimcaui 28665
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimcaui (𝐹𝑣 𝐴𝐹 ∈ Cauchy)

Proof of Theorem hlimcaui
StepHypRef Expression
1 eqid 2778 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2778 . . . . . . . 8 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2778 . . . . . . . 8 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
41, 2, 3hhlm 28628 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
5 resss 5671 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
64, 5eqsstri 3854 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
7 dmss 5568 . . . . . 6 ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
86, 7ax-mp 5 . . . . 5 dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
91, 2hhxmet 28604 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
103lmcau 23519 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
119, 10ax-mp 5 . . . . 5 dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
128, 11sstri 3830 . . . 4 dom ⇝𝑣 ⊆ (Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
134dmeqi 5570 . . . . . 6 dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
14 dmres 5668 . . . . . 6 dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)) = (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
1513, 14eqtri 2802 . . . . 5 dom ⇝𝑣 = (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
16 inss1 4053 . . . . 5 (( ℋ ↑𝑚 ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))) ⊆ ( ℋ ↑𝑚 ℕ)
1715, 16eqsstri 3854 . . . 4 dom ⇝𝑣 ⊆ ( ℋ ↑𝑚 ℕ)
1812, 17ssini 4056 . . 3 dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑𝑚 ℕ))
191, 2hhcau 28627 . . 3 Cauchy = ((Cau‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∩ ( ℋ ↑𝑚 ℕ))
2018, 19sseqtr4i 3857 . 2 dom ⇝𝑣 ⊆ Cauchy
21 relres 5675 . . . 4 Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ))
224releqi 5450 . . . 4 (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑𝑚 ℕ)))
2321, 22mpbir 223 . . 3 Rel ⇝𝑣
2423releldmi 5608 . 2 (𝐹𝑣 𝐴𝐹 ∈ dom ⇝𝑣 )
2520, 24sseldi 3819 1 (𝐹𝑣 𝐴𝐹 ∈ Cauchy)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cin 3791  wss 3792  cop 4404   class class class wbr 4886  dom cdm 5355  cres 5357  Rel wrel 5360  cfv 6135  (class class class)co 6922  𝑚 cmap 8140  cn 11374  ∞Metcxmet 20127  MetOpencmopn 20132  𝑡clm 21438  Cauccau 23459  IndMetcims 28018  chba 28348   + cva 28349   · csm 28350  normcno 28352  Cauchyccauold 28355  𝑣 chli 28356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352  ax-hilex 28428  ax-hfvadd 28429  ax-hvcom 28430  ax-hvass 28431  ax-hv0cl 28432  ax-hvaddid 28433  ax-hfvmul 28434  ax-hvmulid 28435  ax-hvmulass 28436  ax-hvdistr1 28437  ax-hvdistr2 28438  ax-hvmul0 28439  ax-hfi 28508  ax-his1 28511  ax-his2 28512  ax-his3 28513  ax-his4 28514
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-icc 12494  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-top 21106  df-topon 21123  df-bases 21158  df-lm 21441  df-haus 21527  df-cau 23462  df-grpo 27920  df-gid 27921  df-ginv 27922  df-gdiv 27923  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-vs 28026  df-nmcv 28027  df-ims 28028  df-hnorm 28397  df-hvsub 28400  df-hlim 28401  df-hcau 28402
This theorem is referenced by:  isch3  28670  chscllem2  29069
  Copyright terms: Public domain W3C validator