![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlimcaui | Structured version Visualization version GIF version |
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlimcaui | ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . . . 8 ⊢ ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ | |
2 | eqid 2724 | . . . . . . . 8 ⊢ (IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) | |
3 | eqid 2724 | . . . . . . . 8 ⊢ (MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) = (MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) | |
4 | 1, 2, 3 | hhlm 30876 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ↾ ( ℋ ↑m ℕ)) |
5 | resss 5996 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) | |
6 | 4, 5 | eqsstri 4008 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) |
7 | dmss 5892 | . . . . . 6 ⊢ ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)))) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) |
9 | 1, 2 | hhxmet 30852 | . . . . . 6 ⊢ (IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) ∈ (∞Met‘ ℋ) |
10 | 3 | lmcau 25151 | . . . . . 6 ⊢ ((IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ⊆ (Cau‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) |
12 | 8, 11 | sstri 3983 | . . . 4 ⊢ dom ⇝𝑣 ⊆ (Cau‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) |
13 | 4 | dmeqi 5894 | . . . . . 6 ⊢ dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ↾ ( ℋ ↑m ℕ)) |
14 | dmres 5993 | . . . . . 6 ⊢ dom ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ↾ ( ℋ ↑m ℕ)) = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)))) | |
15 | 13, 14 | eqtri 2752 | . . . . 5 ⊢ dom ⇝𝑣 = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)))) |
16 | inss1 4220 | . . . . 5 ⊢ (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)))) ⊆ ( ℋ ↑m ℕ) | |
17 | 15, 16 | eqsstri 4008 | . . . 4 ⊢ dom ⇝𝑣 ⊆ ( ℋ ↑m ℕ) |
18 | 12, 17 | ssini 4223 | . . 3 ⊢ dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) ∩ ( ℋ ↑m ℕ)) |
19 | 1, 2 | hhcau 30875 | . . 3 ⊢ Cauchy = ((Cau‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) ∩ ( ℋ ↑m ℕ)) |
20 | 18, 19 | sseqtrri 4011 | . 2 ⊢ dom ⇝𝑣 ⊆ Cauchy |
21 | relres 6000 | . . . 4 ⊢ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ↾ ( ℋ ↑m ℕ)) | |
22 | 4 | releqi 5767 | . . . 4 ⊢ (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩))) ↾ ( ℋ ↑m ℕ))) |
23 | 21, 22 | mpbir 230 | . . 3 ⊢ Rel ⇝𝑣 |
24 | 23 | releldmi 5937 | . 2 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ dom ⇝𝑣 ) |
25 | 20, 24 | sselid 3972 | 1 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∩ cin 3939 ⊆ wss 3940 ⟨cop 4626 class class class wbr 5138 dom cdm 5666 ↾ cres 5668 Rel wrel 5671 ‘cfv 6533 (class class class)co 7401 ↑m cmap 8815 ℕcn 12208 ∞Metcxmet 21208 MetOpencmopn 21213 ⇝𝑡clm 23040 Cauccau 25091 IndMetcims 30268 ℋchba 30596 +ℎ cva 30597 ·ℎ csm 30598 normℎcno 30600 Cauchyccauold 30603 ⇝𝑣 chli 30604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 ax-mulf 11185 ax-hilex 30676 ax-hfvadd 30677 ax-hvcom 30678 ax-hvass 30679 ax-hv0cl 30680 ax-hvaddid 30681 ax-hfvmul 30682 ax-hvmulid 30683 ax-hvmulass 30684 ax-hvdistr1 30685 ax-hvdistr2 30686 ax-hvmul0 30687 ax-hfi 30756 ax-his1 30759 ax-his2 30760 ax-his3 30761 ax-his4 30762 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-map 8817 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-sup 9432 df-inf 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-icc 13327 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-topgen 17385 df-psmet 21215 df-xmet 21216 df-met 21217 df-bl 21218 df-mopn 21219 df-top 22706 df-topon 22723 df-bases 22759 df-lm 23043 df-haus 23129 df-cau 25094 df-grpo 30170 df-gid 30171 df-ginv 30172 df-gdiv 30173 df-ablo 30222 df-vc 30236 df-nv 30269 df-va 30272 df-ba 30273 df-sm 30274 df-0v 30275 df-vs 30276 df-nmcv 30277 df-ims 30278 df-hnorm 30645 df-hvsub 30648 df-hlim 30649 df-hcau 30650 |
This theorem is referenced by: isch3 30918 chscllem2 31315 |
Copyright terms: Public domain | W3C validator |