Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hlimcaui | Structured version Visualization version GIF version |
Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlimcaui | ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . . . 8 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
2 | eqid 2736 | . . . . . . . 8 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | eqid 2736 | . . . . . . . 8 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) | |
4 | 1, 2, 3 | hhlm 29610 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
5 | resss 5928 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) | |
6 | 4, 5 | eqsstri 3960 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
7 | dmss 5824 | . . . . . 6 ⊢ ( ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) → dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ dom ⇝𝑣 ⊆ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
9 | 1, 2 | hhxmet 29586 | . . . . . 6 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) |
10 | 3 | lmcau 24526 | . . . . . 6 ⊢ ((IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) → dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
12 | 8, 11 | sstri 3935 | . . . 4 ⊢ dom ⇝𝑣 ⊆ (Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
13 | 4 | dmeqi 5826 | . . . . . 6 ⊢ dom ⇝𝑣 = dom ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
14 | dmres 5925 | . . . . . 6 ⊢ dom ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) | |
15 | 13, 14 | eqtri 2764 | . . . . 5 ⊢ dom ⇝𝑣 = (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) |
16 | inss1 4168 | . . . . 5 ⊢ (( ℋ ↑m ℕ) ∩ dom (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) ⊆ ( ℋ ↑m ℕ) | |
17 | 15, 16 | eqsstri 3960 | . . . 4 ⊢ dom ⇝𝑣 ⊆ ( ℋ ↑m ℕ) |
18 | 12, 17 | ssini 4171 | . . 3 ⊢ dom ⇝𝑣 ⊆ ((Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∩ ( ℋ ↑m ℕ)) |
19 | 1, 2 | hhcau 29609 | . . 3 ⊢ Cauchy = ((Cau‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∩ ( ℋ ↑m ℕ)) |
20 | 18, 19 | sseqtrri 3963 | . 2 ⊢ dom ⇝𝑣 ⊆ Cauchy |
21 | relres 5932 | . . . 4 ⊢ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) | |
22 | 4 | releqi 5699 | . . . 4 ⊢ (Rel ⇝𝑣 ↔ Rel ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))) |
23 | 21, 22 | mpbir 230 | . . 3 ⊢ Rel ⇝𝑣 |
24 | 23 | releldmi 5869 | . 2 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ dom ⇝𝑣 ) |
25 | 20, 24 | sselid 3924 | 1 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∩ cin 3891 ⊆ wss 3892 〈cop 4571 class class class wbr 5081 dom cdm 5600 ↾ cres 5602 Rel wrel 5605 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 ℕcn 12023 ∞Metcxmet 20631 MetOpencmopn 20636 ⇝𝑡clm 22426 Cauccau 24466 IndMetcims 29002 ℋchba 29330 +ℎ cva 29331 ·ℎ csm 29332 normℎcno 29334 Cauchyccauold 29337 ⇝𝑣 chli 29338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 ax-hilex 29410 ax-hfvadd 29411 ax-hvcom 29412 ax-hvass 29413 ax-hv0cl 29414 ax-hvaddid 29415 ax-hfvmul 29416 ax-hvmulid 29417 ax-hvmulass 29418 ax-hvdistr1 29419 ax-hvdistr2 29420 ax-hvmul0 29421 ax-hfi 29490 ax-his1 29493 ax-his2 29494 ax-his3 29495 ax-his4 29496 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-n0 12284 df-z 12370 df-uz 12633 df-q 12739 df-rp 12781 df-xneg 12898 df-xadd 12899 df-xmul 12900 df-icc 13136 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-topgen 17203 df-psmet 20638 df-xmet 20639 df-met 20640 df-bl 20641 df-mopn 20642 df-top 22092 df-topon 22109 df-bases 22145 df-lm 22429 df-haus 22515 df-cau 24469 df-grpo 28904 df-gid 28905 df-ginv 28906 df-gdiv 28907 df-ablo 28956 df-vc 28970 df-nv 29003 df-va 29006 df-ba 29007 df-sm 29008 df-0v 29009 df-vs 29010 df-nmcv 29011 df-ims 29012 df-hnorm 29379 df-hvsub 29382 df-hlim 29383 df-hcau 29384 |
This theorem is referenced by: isch3 29652 chscllem2 30049 |
Copyright terms: Public domain | W3C validator |