| Step | Hyp | Ref
| Expression |
| 1 | | fbasrn.c |
. . 3
⊢ 𝐶 = ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) |
| 2 | | simpl3 1194 |
. . . . . 6
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝐵) → 𝑌 ∈ 𝑉) |
| 3 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝐵) → 𝐹:𝑋⟶𝑌) |
| 4 | | fimass 6756 |
. . . . . . 7
⊢ (𝐹:𝑋⟶𝑌 → (𝐹 “ 𝑥) ⊆ 𝑌) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ⊆ 𝑌) |
| 6 | 2, 5 | sselpwd 5328 |
. . . . 5
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ 𝒫 𝑌) |
| 7 | 6 | fmpttd 7135 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)):𝐵⟶𝒫 𝑌) |
| 8 | 7 | frnd 6744 |
. . 3
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
| 9 | 1, 8 | eqsstrid 4022 |
. 2
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐶 ⊆ 𝒫 𝑌) |
| 10 | 1 | a1i 11 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐶 = ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥))) |
| 11 | | ffun 6739 |
. . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) |
| 12 | 11 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → Fun 𝐹) |
| 13 | | funimaexg 6653 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ 𝑥) ∈ V) |
| 14 | 13 | ralrimiva 3146 |
. . . . . . 7
⊢ (Fun
𝐹 → ∀𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ∈ V) |
| 15 | | dmmptg 6262 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐵 (𝐹 “ 𝑥) ∈ V → dom (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) = 𝐵) |
| 16 | 12, 14, 15 | 3syl 18 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → dom (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) = 𝐵) |
| 17 | | fbasne0 23838 |
. . . . . . 7
⊢ (𝐵 ∈ (fBas‘𝑋) → 𝐵 ≠ ∅) |
| 18 | 17 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐵 ≠ ∅) |
| 19 | 16, 18 | eqnetrd 3008 |
. . . . 5
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → dom (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ≠ ∅) |
| 20 | | dm0rn0 5935 |
. . . . . 6
⊢ (dom
(𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) = ∅ ↔ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) = ∅) |
| 21 | 20 | necon3bii 2993 |
. . . . 5
⊢ (dom
(𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ≠ ∅ ↔ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ≠ ∅) |
| 22 | 19, 21 | sylib 218 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ≠ ∅) |
| 23 | 10, 22 | eqnetrd 3008 |
. . 3
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐶 ≠ ∅) |
| 24 | | fbelss 23841 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ 𝑋) |
| 25 | 24 | ex 412 |
. . . . . . . 8
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋)) |
| 26 | 25 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋)) |
| 27 | | 0nelfb 23839 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (fBas‘𝑋) → ¬ ∅ ∈
𝐵) |
| 28 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐵 ↔ ∅ ∈ 𝐵)) |
| 29 | 28 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (¬ 𝑥 ∈ 𝐵 ↔ ¬ ∅ ∈ 𝐵)) |
| 30 | 27, 29 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑥 = ∅ → ¬ 𝑥 ∈ 𝐵)) |
| 31 | 30 | con2d 134 |
. . . . . . . 8
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅)) |
| 32 | 31 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅)) |
| 33 | 26, 32 | jcad 512 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐵 → (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅))) |
| 34 | | fdm 6745 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
| 35 | 34 | 3ad2ant2 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → dom 𝐹 = 𝑋) |
| 36 | 35 | sseq2d 4016 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝑥 ⊆ dom 𝐹 ↔ 𝑥 ⊆ 𝑋)) |
| 37 | 36 | biimpar 477 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ⊆ 𝑋) → 𝑥 ⊆ dom 𝐹) |
| 38 | | sseqin2 4223 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑥) = 𝑥) |
| 39 | 37, 38 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ⊆ 𝑋) → (dom 𝐹 ∩ 𝑥) = 𝑥) |
| 40 | 39 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ⊆ 𝑋) → ((dom 𝐹 ∩ 𝑥) = ∅ ↔ 𝑥 = ∅)) |
| 41 | 40 | biimpd 229 |
. . . . . . . . 9
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ⊆ 𝑋) → ((dom 𝐹 ∩ 𝑥) = ∅ → 𝑥 = ∅)) |
| 42 | 41 | con3d 152 |
. . . . . . . 8
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 = ∅ → ¬ (dom 𝐹 ∩ 𝑥) = ∅)) |
| 43 | 42 | expimpd 453 |
. . . . . . 7
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ((𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅) → ¬ (dom 𝐹 ∩ 𝑥) = ∅)) |
| 44 | | eqcom 2744 |
. . . . . . . . 9
⊢ (∅
= (𝐹 “ 𝑥) ↔ (𝐹 “ 𝑥) = ∅) |
| 45 | | imadisj 6098 |
. . . . . . . . 9
⊢ ((𝐹 “ 𝑥) = ∅ ↔ (dom 𝐹 ∩ 𝑥) = ∅) |
| 46 | 44, 45 | bitri 275 |
. . . . . . . 8
⊢ (∅
= (𝐹 “ 𝑥) ↔ (dom 𝐹 ∩ 𝑥) = ∅) |
| 47 | 46 | notbii 320 |
. . . . . . 7
⊢ (¬
∅ = (𝐹 “ 𝑥) ↔ ¬ (dom 𝐹 ∩ 𝑥) = ∅) |
| 48 | 43, 47 | imbitrrdi 252 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ((𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅) → ¬ ∅ = (𝐹 “ 𝑥))) |
| 49 | 33, 48 | syld 47 |
. . . . 5
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐵 → ¬ ∅ = (𝐹 “ 𝑥))) |
| 50 | 49 | ralrimiv 3145 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ∀𝑥 ∈ 𝐵 ¬ ∅ = (𝐹 “ 𝑥)) |
| 51 | 1 | eleq2i 2833 |
. . . . . . 7
⊢ (∅
∈ 𝐶 ↔ ∅
∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥))) |
| 52 | | 0ex 5307 |
. . . . . . . 8
⊢ ∅
∈ V |
| 53 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) |
| 54 | 53 | elrnmpt 5969 |
. . . . . . . 8
⊢ (∅
∈ V → (∅ ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐵 ∅ = (𝐹 “ 𝑥))) |
| 55 | 52, 54 | ax-mp 5 |
. . . . . . 7
⊢ (∅
∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐵 ∅ = (𝐹 “ 𝑥)) |
| 56 | 51, 55 | bitri 275 |
. . . . . 6
⊢ (∅
∈ 𝐶 ↔
∃𝑥 ∈ 𝐵 ∅ = (𝐹 “ 𝑥)) |
| 57 | 56 | notbii 320 |
. . . . 5
⊢ (¬
∅ ∈ 𝐶 ↔
¬ ∃𝑥 ∈ 𝐵 ∅ = (𝐹 “ 𝑥)) |
| 58 | | df-nel 3047 |
. . . . 5
⊢ (∅
∉ 𝐶 ↔ ¬
∅ ∈ 𝐶) |
| 59 | | ralnex 3072 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ¬ ∅ = (𝐹 “ 𝑥) ↔ ¬ ∃𝑥 ∈ 𝐵 ∅ = (𝐹 “ 𝑥)) |
| 60 | 57, 58, 59 | 3bitr4i 303 |
. . . 4
⊢ (∅
∉ 𝐶 ↔
∀𝑥 ∈ 𝐵 ¬ ∅ = (𝐹 “ 𝑥)) |
| 61 | 50, 60 | sylibr 234 |
. . 3
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ∅ ∉ 𝐶) |
| 62 | 1 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝑟 ∈ 𝐶 ↔ 𝑟 ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥))) |
| 63 | | imaeq2 6074 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝐹 “ 𝑥) = (𝐹 “ 𝑢)) |
| 64 | 63 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) = (𝑢 ∈ 𝐵 ↦ (𝐹 “ 𝑢)) |
| 65 | 64 | elrnmpt 5969 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑢 ∈ 𝐵 𝑟 = (𝐹 “ 𝑢))) |
| 66 | 65 | elv 3485 |
. . . . . . . 8
⊢ (𝑟 ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑢 ∈ 𝐵 𝑟 = (𝐹 “ 𝑢)) |
| 67 | 62, 66 | bitri 275 |
. . . . . . 7
⊢ (𝑟 ∈ 𝐶 ↔ ∃𝑢 ∈ 𝐵 𝑟 = (𝐹 “ 𝑢)) |
| 68 | 1 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝐶 ↔ 𝑠 ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥))) |
| 69 | | imaeq2 6074 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑣 → (𝐹 “ 𝑥) = (𝐹 “ 𝑣)) |
| 70 | 69 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) = (𝑣 ∈ 𝐵 ↦ (𝐹 “ 𝑣)) |
| 71 | 70 | elrnmpt 5969 |
. . . . . . . . 9
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑣 ∈ 𝐵 𝑠 = (𝐹 “ 𝑣))) |
| 72 | 71 | elv 3485 |
. . . . . . . 8
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑣 ∈ 𝐵 𝑠 = (𝐹 “ 𝑣)) |
| 73 | 68, 72 | bitri 275 |
. . . . . . 7
⊢ (𝑠 ∈ 𝐶 ↔ ∃𝑣 ∈ 𝐵 𝑠 = (𝐹 “ 𝑣)) |
| 74 | 67, 73 | anbi12i 628 |
. . . . . 6
⊢ ((𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶) ↔ (∃𝑢 ∈ 𝐵 𝑟 = (𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐵 𝑠 = (𝐹 “ 𝑣))) |
| 75 | | reeanv 3229 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐵 ∃𝑣 ∈ 𝐵 (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣)) ↔ (∃𝑢 ∈ 𝐵 𝑟 = (𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐵 𝑠 = (𝐹 “ 𝑣))) |
| 76 | 74, 75 | bitr4i 278 |
. . . . 5
⊢ ((𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶) ↔ ∃𝑢 ∈ 𝐵 ∃𝑣 ∈ 𝐵 (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) |
| 77 | | fbasssin 23844 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ (𝑢 ∩ 𝑣)) |
| 78 | 77 | 3expb 1121 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ (𝑢 ∩ 𝑣)) |
| 79 | 78 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ (𝑢 ∩ 𝑣)) |
| 80 | 79 | adantrr 717 |
. . . . . . . 8
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣)))) → ∃𝑤 ∈ 𝐵 𝑤 ⊆ (𝑢 ∩ 𝑣)) |
| 81 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝐹 “ 𝑤) = (𝐹 “ 𝑤) |
| 82 | | imaeq2 6074 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐹 “ 𝑥) = (𝐹 “ 𝑤)) |
| 83 | 82 | rspceeqv 3645 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ 𝐵 ∧ (𝐹 “ 𝑤) = (𝐹 “ 𝑤)) → ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑤) = (𝐹 “ 𝑥)) |
| 84 | 81, 83 | mpan2 691 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑤) = (𝐹 “ 𝑥)) |
| 85 | 84 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑤) = (𝐹 “ 𝑥)) |
| 86 | 1 | eleq2i 2833 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ 𝑤) ∈ 𝐶 ↔ (𝐹 “ 𝑤) ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥))) |
| 87 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
| 88 | 87 | funimaex 6655 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 → (𝐹 “ 𝑤) ∈ V) |
| 89 | 53 | elrnmpt 5969 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ 𝑤) ∈ V → ((𝐹 “ 𝑤) ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑤) = (𝐹 “ 𝑥))) |
| 90 | 12, 88, 89 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ((𝐹 “ 𝑤) ∈ ran (𝑥 ∈ 𝐵 ↦ (𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑤) = (𝐹 “ 𝑥))) |
| 91 | 86, 90 | bitrid 283 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ((𝐹 “ 𝑤) ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑤) = (𝐹 “ 𝑥))) |
| 92 | 91 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → ((𝐹 “ 𝑤) ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑤) = (𝐹 “ 𝑥))) |
| 93 | 85, 92 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → (𝐹 “ 𝑤) ∈ 𝐶) |
| 94 | | imass2 6120 |
. . . . . . . . . . . 12
⊢ (𝑤 ⊆ (𝑢 ∩ 𝑣) → (𝐹 “ 𝑤) ⊆ (𝐹 “ (𝑢 ∩ 𝑣))) |
| 95 | 94 | ad2antll 729 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → (𝐹 “ 𝑤) ⊆ (𝐹 “ (𝑢 ∩ 𝑣))) |
| 96 | | inss1 4237 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∩ 𝑣) ⊆ 𝑢 |
| 97 | | imass2 6120 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑣) ⊆ 𝑢 → (𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝐹 “ 𝑢)) |
| 98 | 96, 97 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝐹 “ 𝑢) |
| 99 | | inss2 4238 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∩ 𝑣) ⊆ 𝑣 |
| 100 | | imass2 6120 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝑣) ⊆ 𝑣 → (𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝐹 “ 𝑣)) |
| 101 | 99, 100 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝐹 “ 𝑣) |
| 102 | 98, 101 | ssini 4240 |
. . . . . . . . . . . 12
⊢ (𝐹 “ (𝑢 ∩ 𝑣)) ⊆ ((𝐹 “ 𝑢) ∩ (𝐹 “ 𝑣)) |
| 103 | | ineq12 4215 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣)) → (𝑟 ∩ 𝑠) = ((𝐹 “ 𝑢) ∩ (𝐹 “ 𝑣))) |
| 104 | 103 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → (𝑟 ∩ 𝑠) = ((𝐹 “ 𝑢) ∩ (𝐹 “ 𝑣))) |
| 105 | 102, 104 | sseqtrrid 4027 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → (𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) |
| 106 | 95, 105 | sstrd 3994 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → (𝐹 “ 𝑤) ⊆ (𝑟 ∩ 𝑠)) |
| 107 | | sseq1 4009 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹 “ 𝑤) → (𝑧 ⊆ (𝑟 ∩ 𝑠) ↔ (𝐹 “ 𝑤) ⊆ (𝑟 ∩ 𝑠))) |
| 108 | 107 | rspcev 3622 |
. . . . . . . . . 10
⊢ (((𝐹 “ 𝑤) ∈ 𝐶 ∧ (𝐹 “ 𝑤) ⊆ (𝑟 ∩ 𝑠)) → ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠)) |
| 109 | 93, 106, 108 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠)) |
| 110 | 109 | adantlrl 720 |
. . . . . . . 8
⊢ ((((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣)))) ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑢 ∩ 𝑣))) → ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠)) |
| 111 | 80, 110 | rexlimddv 3161 |
. . . . . . 7
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣)))) → ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠)) |
| 112 | 111 | exp32 420 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → ((𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣)) → ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠)))) |
| 113 | 112 | rexlimdvv 3212 |
. . . . 5
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (∃𝑢 ∈ 𝐵 ∃𝑣 ∈ 𝐵 (𝑟 = (𝐹 “ 𝑢) ∧ 𝑠 = (𝐹 “ 𝑣)) → ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠))) |
| 114 | 76, 113 | biimtrid 242 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ((𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶) → ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠))) |
| 115 | 114 | ralrimivv 3200 |
. . 3
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → ∀𝑟 ∈ 𝐶 ∀𝑠 ∈ 𝐶 ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠)) |
| 116 | 23, 61, 115 | 3jca 1129 |
. 2
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀𝑟 ∈ 𝐶 ∀𝑠 ∈ 𝐶 ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠))) |
| 117 | | isfbas2 23843 |
. . 3
⊢ (𝑌 ∈ 𝑉 → (𝐶 ∈ (fBas‘𝑌) ↔ (𝐶 ⊆ 𝒫 𝑌 ∧ (𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀𝑟 ∈ 𝐶 ∀𝑠 ∈ 𝐶 ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠))))) |
| 118 | 117 | 3ad2ant3 1136 |
. 2
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐶 ∈ (fBas‘𝑌) ↔ (𝐶 ⊆ 𝒫 𝑌 ∧ (𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀𝑟 ∈ 𝐶 ∀𝑠 ∈ 𝐶 ∃𝑧 ∈ 𝐶 𝑧 ⊆ (𝑟 ∩ 𝑠))))) |
| 119 | 9, 116, 118 | mpbir2and 713 |
1
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋⟶𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐶 ∈ (fBas‘𝑌)) |