Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chdmm1i | Structured version Visualization version GIF version |
Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chdmm1i | ⊢ (⊥‘(𝐴 ∩ 𝐵)) = ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . . . . . 7 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | choccli 29697 | . . . . . 6 ⊢ (⊥‘𝐴) ∈ Cℋ |
3 | chjcl.2 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | choccli 29697 | . . . . . 6 ⊢ (⊥‘𝐵) ∈ Cℋ |
5 | 2, 4 | chub1i 29859 | . . . . 5 ⊢ (⊥‘𝐴) ⊆ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
6 | 2, 4 | chjcli 29847 | . . . . . 6 ⊢ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∈ Cℋ |
7 | 1, 6 | chsscon1i 29852 | . . . . 5 ⊢ ((⊥‘𝐴) ⊆ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ↔ (⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ 𝐴) |
8 | 5, 7 | mpbi 229 | . . . 4 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ 𝐴 |
9 | 4, 2 | chub2i 29860 | . . . . 5 ⊢ (⊥‘𝐵) ⊆ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
10 | 3, 6 | chsscon1i 29852 | . . . . 5 ⊢ ((⊥‘𝐵) ⊆ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ↔ (⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ 𝐵) |
11 | 9, 10 | mpbi 229 | . . . 4 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ 𝐵 |
12 | 8, 11 | ssini 4168 | . . 3 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ (𝐴 ∩ 𝐵) |
13 | 1, 3 | chincli 29850 | . . . 4 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
14 | 6, 13 | chsscon1i 29852 | . . 3 ⊢ ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ (𝐴 ∩ 𝐵) ↔ (⊥‘(𝐴 ∩ 𝐵)) ⊆ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) |
15 | 12, 14 | mpbi 229 | . 2 ⊢ (⊥‘(𝐴 ∩ 𝐵)) ⊆ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
16 | inss1 4165 | . . . 4 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
17 | 13, 1 | chsscon3i 29851 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘(𝐴 ∩ 𝐵))) |
18 | 16, 17 | mpbi 229 | . . 3 ⊢ (⊥‘𝐴) ⊆ (⊥‘(𝐴 ∩ 𝐵)) |
19 | inss2 4166 | . . . 4 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
20 | 13, 3 | chsscon3i 29851 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ↔ (⊥‘𝐵) ⊆ (⊥‘(𝐴 ∩ 𝐵))) |
21 | 19, 20 | mpbi 229 | . . 3 ⊢ (⊥‘𝐵) ⊆ (⊥‘(𝐴 ∩ 𝐵)) |
22 | 13 | choccli 29697 | . . . 4 ⊢ (⊥‘(𝐴 ∩ 𝐵)) ∈ Cℋ |
23 | 2, 4, 22 | chlubii 29862 | . . 3 ⊢ (((⊥‘𝐴) ⊆ (⊥‘(𝐴 ∩ 𝐵)) ∧ (⊥‘𝐵) ⊆ (⊥‘(𝐴 ∩ 𝐵))) → ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ⊆ (⊥‘(𝐴 ∩ 𝐵))) |
24 | 18, 21, 23 | mp2an 688 | . 2 ⊢ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ⊆ (⊥‘(𝐴 ∩ 𝐵)) |
25 | 15, 24 | eqssi 3939 | 1 ⊢ (⊥‘(𝐴 ∩ 𝐵)) = ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 ∩ cin 3888 ⊆ wss 3889 ‘cfv 6447 (class class class)co 7295 Cℋ cch 29319 ⊥cort 29320 ∨ℋ chj 29323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-cc 10219 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 ax-addf 10978 ax-mulf 10979 ax-hilex 29389 ax-hfvadd 29390 ax-hvcom 29391 ax-hvass 29392 ax-hv0cl 29393 ax-hvaddid 29394 ax-hfvmul 29395 ax-hvmulid 29396 ax-hvmulass 29397 ax-hvdistr1 29398 ax-hvdistr2 29399 ax-hvmul0 29400 ax-hfi 29469 ax-his1 29472 ax-his2 29473 ax-his3 29474 ax-his4 29475 ax-hcompl 29592 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-2o 8318 df-oadd 8321 df-omul 8322 df-er 8518 df-map 8637 df-pm 8638 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-fi 9198 df-sup 9229 df-inf 9230 df-oi 9297 df-card 9725 df-acn 9728 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-q 12717 df-rp 12759 df-xneg 12876 df-xadd 12877 df-xmul 12878 df-ioo 13111 df-ico 13113 df-icc 13114 df-fz 13268 df-fzo 13411 df-fl 13540 df-seq 13750 df-exp 13811 df-hash 14073 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-clim 15225 df-rlim 15226 df-sum 15426 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-hom 17014 df-cco 17015 df-rest 17161 df-topn 17162 df-0g 17180 df-gsum 17181 df-topgen 17182 df-pt 17183 df-prds 17186 df-xrs 17241 df-qtop 17246 df-imas 17247 df-xps 17249 df-mre 17323 df-mrc 17324 df-acs 17326 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-submnd 18459 df-mulg 18729 df-cntz 18951 df-cmn 19416 df-psmet 20617 df-xmet 20618 df-met 20619 df-bl 20620 df-mopn 20621 df-fbas 20622 df-fg 20623 df-cnfld 20626 df-top 22071 df-topon 22088 df-topsp 22110 df-bases 22124 df-cld 22198 df-ntr 22199 df-cls 22200 df-nei 22277 df-cn 22406 df-cnp 22407 df-lm 22408 df-haus 22494 df-tx 22741 df-hmeo 22934 df-fil 23025 df-fm 23117 df-flim 23118 df-flf 23119 df-xms 23501 df-ms 23502 df-tms 23503 df-cfil 24447 df-cau 24448 df-cmet 24449 df-grpo 28883 df-gid 28884 df-ginv 28885 df-gdiv 28886 df-ablo 28935 df-vc 28949 df-nv 28982 df-va 28985 df-ba 28986 df-sm 28987 df-0v 28988 df-vs 28989 df-nmcv 28990 df-ims 28991 df-dip 29091 df-ssp 29112 df-ph 29203 df-cbn 29253 df-hnorm 29358 df-hba 29359 df-hvsub 29361 df-hlim 29362 df-hcau 29363 df-sh 29597 df-ch 29611 df-oc 29642 df-ch0 29643 df-shs 29698 df-chj 29700 |
This theorem is referenced by: chdmm2i 29868 chdmm3i 29869 chdmm1 29915 pjoml4i 29977 cmcmlem 29981 cmbr2i 29986 fh3i 30013 fh4i 30014 cm2mi 30016 qlaxr3i 30026 mdsldmd1i 30721 cvexchi 30759 |
Copyright terms: Public domain | W3C validator |